continuous rigid frame bridge
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 31)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kexin Zhang ◽  
Tianyu Qi ◽  
Dachao Li ◽  
Xingwei Xue ◽  
Zhimin Zhu

PurposeThe paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health monitoring after reinforcement were carried out. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved.Design/methodology/approachThis paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. High strength, low relaxation steel strand with high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel strand and steel plate was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on finite element model.FindingsThe cumulative upward deflection of the second span the third span was 39.7 mm, which is basically consistent with the theoretical value, and the measured value is smaller than the theoretical value. The deflection value of the second span during data acquisition was −20 mm–10 mm, which does not exceed the maximum deflection value of live load, and the deflection of the bridge is in a safe state during normal use. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.Originality/valueThis paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. To investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening and health monitoring after reinforcement were carried out.


Author(s):  
Ying hua Li ◽  
Kesheng Peng ◽  
Junyong He ◽  
Qiangjun Shuai ◽  
Gang Zou

When the bridge components needing maintenance are the world problem at present, and the health monitoring system is considered to be a very helpful tool for solving this problem. In this paper, a large number of strain data acquired from the structural health monitoring system (SHMS) installed on a continuous rigid frame bridge are adopted to do reliability assessment. Firstly, a calculation method of punctiform time-dependent reliability is proposed based on the basic reliability theory, and introduced how to calculate reliability of the bridge by using the stress data transformed from the strain data. Secondly, combined with “Three Sigma” principle and the basic pressure safety reserve requirement, the critical load effects distribution function of the bridge is defined, and then the maintenance reliability threshold for controlling the unfavorable load state which appears in the early operation stage of this type bridge is suggested, and then the combination of bridge maintenance management and health monitoring system is realized. Finally, the transformed stress distribution certifies that the load effects of concrete bridges practically have a normal distribution; as for the concrete continuous rigid frame bridge with C50 strength grade concrete, the retrofit reliability threshold should be valued at 6.13. The methodology suggested in this article can help bridge engineers do effective maintenance of bridges, which can effectively extend the service life of the bridge and bring better economic and social benefits.


2021 ◽  
pp. 127571
Author(s):  
Yong Zeng ◽  
Yutong Zeng ◽  
Dong Jiang ◽  
Shanhong Liu ◽  
Hongmei Tan ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yueqi Gao

With the current rapid development of urbanization in China, people's living standards have been greatly improved. In the context of such a development background, the requirements for road traffic are getting more stringent, especially for bridge projects. The arched continuous rigid-frame bridge was developed under this social background. The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation, landscape, and sightseeing. Based on the above, this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge, in hope of providing a valuable reference for relevant personnel.


Sign in / Sign up

Export Citation Format

Share Document