Analytical estimation of the key performance points of the tensile force-displacement response of Crescent Shaped Braces

2021 ◽  
Vol 148 ◽  
pp. 106839
Author(s):  
Michele Palermo ◽  
Vittoria Laghi ◽  
Giada Gasparini ◽  
Stefano Silvestri ◽  
Tomaso Trombetti
2021 ◽  
pp. 875529302199483
Author(s):  
Eyitayo A Opabola ◽  
Kenneth J Elwood

Existing reinforced concrete (RC) columns with short splices in older-type frame structures are prone to either a shear or bond mechanism. Experimental results have shown that the force–displacement response of columns exhibiting these failure modes are different from flexure-critical columns and typically have lower deformation capacity. This article presents a failure mode-based approach for seismic assessment of RC columns with short splices. In this approach, first, the probable failure mode of the component is evaluated. Subsequently, based on the failure mode, the force–displacement response of the component can be predicted. In this article, recommendations are proposed for evaluating the probable failure mode, elastic rotation, drift at lateral failure, and drift at axial failure for columns with short splices experiencing shear, flexure, or bond failures.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Darius Zabulionis ◽  
Ona Lukoševičienė ◽  
Rimantas Kačianauskas ◽  
Liudas Tumonis ◽  
Romualdas Kliukas

The stochastic modelling of the microcracking and the force-displacement behaviour of the tensile steel reinforced tie using the lattice model is presented in the current article. The three-dimension problem of the modelling of the tie is reduced to the two-dimensional so as the main stiffness parameters of the concrete and the reinforcement of the two-dimensional model would be the same as for the three-dimensional. The concrete and steel obey the Hook law. All elastic constants, as well as dimensions of the tie, were assumed as the deterministic quantities except for the critical concrete tensile strains which were treated as a two-dimensional stationary uncorrelated truncated Gaussian random field. The discrete element approach and the explicit integration scheme have been used for the modelling. The estimations of the main parameters of the force-displacement behaviour stochastic process and other statistical indexes were obtained using 72 realization of the force-displacement behaviour of a chosen model. Extra two stochastic realizations of the two different models, as well as three deterministic models, were modelled to compare stochastic and deterministic behaviour of the force-displacement behaviour. The analysis showed that the force-displacement behaviour of the tie under tensile force cannot be treated as a Gaussian stochastic process when the p value is 0.05 at the small displacements and within the interval when the cracking of the concrete is very intensive. However, at the bigger displacements, when the cracking becomes less intensive, the tensile force can be treated as a Gaussian random variable.


1985 ◽  
Vol 111 (9) ◽  
pp. 1061-1076 ◽  
Author(s):  
Charles H. Trautmann ◽  
Thomas D. O'Rourfce ◽  
Fred H. Kulhawy

Sign in / Sign up

Export Citation Format

Share Document