scholarly journals Stochastic Lattice Modelling of the Force-Displacement and Cracking Behaviour of the Steel Reinforced Tie

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Darius Zabulionis ◽  
Ona Lukoševičienė ◽  
Rimantas Kačianauskas ◽  
Liudas Tumonis ◽  
Romualdas Kliukas

The stochastic modelling of the microcracking and the force-displacement behaviour of the tensile steel reinforced tie using the lattice model is presented in the current article. The three-dimension problem of the modelling of the tie is reduced to the two-dimensional so as the main stiffness parameters of the concrete and the reinforcement of the two-dimensional model would be the same as for the three-dimensional. The concrete and steel obey the Hook law. All elastic constants, as well as dimensions of the tie, were assumed as the deterministic quantities except for the critical concrete tensile strains which were treated as a two-dimensional stationary uncorrelated truncated Gaussian random field. The discrete element approach and the explicit integration scheme have been used for the modelling. The estimations of the main parameters of the force-displacement behaviour stochastic process and other statistical indexes were obtained using 72 realization of the force-displacement behaviour of a chosen model. Extra two stochastic realizations of the two different models, as well as three deterministic models, were modelled to compare stochastic and deterministic behaviour of the force-displacement behaviour. The analysis showed that the force-displacement behaviour of the tie under tensile force cannot be treated as a Gaussian stochastic process when the p value is 0.05 at the small displacements and within the interval when the cracking of the concrete is very intensive. However, at the bigger displacements, when the cracking becomes less intensive, the tensile force can be treated as a Gaussian random variable.

Author(s):  
SI SI

We shall first establish a canonical representation of a Gaussian random field X(C) indexed by a smooth contour C in terms of two-dimensional parameter white noise. Then, we take a nonlinear function F(X(C)) of the X(C) and obtain its variation when C deforms slightly. The variational formula is analogous to the Ito formula for a stochastic process X(t), but somewhat simpler.


Author(s):  
Marcos Donato Ferreira ◽  
Mauro Costa de Oliveira ◽  
Rafaella Cristina Carvalho ◽  
Sergio Hamilton Sphaier

In the development of the mooring design of FPSOs in spread mooring system (SMS) configuration, it was observed that the utilization of asymmetric riser arrangement in deep waters might lead to an asymmetrical roll response of the FPSO. In particular, concentrating all riser connections on the portside, it could be observed that roll and heave coupling under the influence of the riser dynamics might lead to a much lower roll response associated with waves coming from portside than from the starboard direction. Simulations were carried using an in-house time domain simulator, where the ship hydrodynamic behavior was represented through the use of impulse response functions and the lines dynamic through the use of non-linear finite element method, using an explicit integration scheme and a lumped mass approach. Non-linear viscous effects could be easily associated to the ship and line velocities. Measured motion responses of an actual FPSO in operation in Campos Basin are compared with the computations.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Mario Lefebvre

International audience A two-dimensional controlled stochastic process defined by a set of stochastic differential equations is considered. Contrary to the most frequent formulation, the control variables appear only in the infinitesimal variances of the process, rather than in the infinitesimal means. The differential game ends the first time the two controlled processes are equal or their difference is equal to a given constant. Explicit solutions to particular problems are obtained by making use of the method of similarity solutions to solve the appropriate partial differential equation. On considère un processus stochastique commandé bidimensionnel défini par un ensemble d'équations différentielles stochastiques. Contrairement à la formulation la plus fréquente, les variables de commande apparaissent dans les variances infinitésimales du processus, plutôt que dans les moyennes infinitésimales. Le jeu différentiel prend fin lorsque les deux processus sont égaux ou que leur différence est égale à une constante donnée. Des solutions explicites à des problèmes particuliers sont obtenues en utilisant la méthode des similitudes pour résoudre l'équation aux dérivées partielles appropriée.


1987 ◽  
Vol 12 (3) ◽  
pp. 349-352
Author(s):  
J. ENGEL ◽  
M. SALAI ◽  
B. YAFFE ◽  
R. TADMOR

Three-dimensional computerized imaging is a new modality of radiological imaging. This new technique transforms the two-dimensional slices of bi-plane CT into a three-dimensional picture by a computer’s monitor adjusted to the system. This system enables the physician to rotate the angle of viewing of the desired region to any desired angle. Moreover, this system can delete certain features of different densities from the picture, such as silicone implants, thus improving visualization. Our preliminary results using this technique are presented. The advantages, pitfalls, and suggested future applications of this new technique in hand surgery are discussed.


1969 ◽  
Vol 6 (02) ◽  
pp. 301-308
Author(s):  
A.M.V. Verhagen

A stochastic process in which any tree in a forest planted on an integer lattice eliminates its four neighbours when it exceeds their heights, is studied for the case when all heights are independent samples from a continuous distribution. The proportion of the trees of the forest eliminated in this manner is determined for both the one and the two dimensional integer lattices.


1988 ◽  
Vol 34 (116) ◽  
pp. 26-30 ◽  
Author(s):  
E.M. Gates ◽  
A. Liu ◽  
E.P. Lozowski

Abstract The accumulation of rime ice on structures, due to the impact and freezing of small water droplets, has been modelled as a stochastic process. Individual droplets are introduced into the flow field about the structure at a random position. Their trajectories are then calculated to determine the position of impact on the structure, or on previously impacted droplets. By assuming that the droplets maintain their shape on impact, the modelled accretion is gradually built up, one droplet at a time. In the present paper, attention has been limited to a circular cylinder as the collecting structure, and it has been assumed that the flow field and the ice accumulation are strictly two-dimensional. With these assumptions, the influence of the droplet/cylinder diameter ratio and of the air speed upon the resulting predictions has been investigated. The main feature of interest in the model prediction is the development, near the edges of the accumulation, of discrete structures called “rime feathers”. The mechanism for the growth of these rime feathers is described, and a comparison is made between the characteristics of the predicted structures and of some natural rime feathers grown in an icing wind tunnel.


Sign in / Sign up

Export Citation Format

Share Document