Seismic assessment of reinforced concrete columns with short lap splices

2021 ◽  
pp. 875529302199483
Author(s):  
Eyitayo A Opabola ◽  
Kenneth J Elwood

Existing reinforced concrete (RC) columns with short splices in older-type frame structures are prone to either a shear or bond mechanism. Experimental results have shown that the force–displacement response of columns exhibiting these failure modes are different from flexure-critical columns and typically have lower deformation capacity. This article presents a failure mode-based approach for seismic assessment of RC columns with short splices. In this approach, first, the probable failure mode of the component is evaluated. Subsequently, based on the failure mode, the force–displacement response of the component can be predicted. In this article, recommendations are proposed for evaluating the probable failure mode, elastic rotation, drift at lateral failure, and drift at axial failure for columns with short splices experiencing shear, flexure, or bond failures.

Author(s):  
Zele Li ◽  
Mohammad Noori ◽  
Ying Zhao ◽  
Chunfeng Wan ◽  
Decheng Feng ◽  
...  

Concrete columns are the most important load-bearing components in civil structures. The potential damage in reinforced concrete (RC) columns could be categorized into three different failure modes: flexural shear (FS) failure, flexural-failure (FF), and shear failure (SF). The corresponding hysteresis loops for each mode differ significantly. Therefore, a multi-parameter hysteretic restoring force model is needed to describe the hysteretic energy dissipation phenomenon and behavior. Identification of the optimal parameter values of a multi-parameter hysteresis model of RC columns under different failure modes is essential in the evaluation of structural inelastic seismic performance. In this paper, a multi-objective optimization algorithm called NSGA-II is employed to identify the parameters of Bouc–Wen–Baber–Noori model (BWBN) hysteresis model, this model has been used for describing the response and modelling restoring force behavior in several structural and mechanical engineering systems, that can fully describe the hysteretic restoring force characteristics of RC columns. An objective function for the restoring force is proposed to identify the parameters of BWBN model. In order to ensure the accuracy of identification, based on the sensitivity analysis, the parameters distribution law of RC columns in different failure modes is obtained. Furthermore, the reference values under different failure modes are proposed. The results presented in this paper will significantly reduce the calculation of subsequent identification. Twelve groups of experimental data are randomly selected to verify the feasibility of the above algorithm. It is demonstrated that using the multi-objective optimization algorithm leads to better identification accuracy with minimum prior experience. Performance of the algorithm is verified using simulated and experimental data. The experimental data of the RC columns were collected from the database of the Pacific Earthquake Engineering Research Center.


2021 ◽  
Vol 11 (9) ◽  
pp. 4043
Author(s):  
Aleksandar Landović ◽  
Miroslav Bešević

Experimental research on axially compressed columns made from reinforced concrete (RC) and RC columns strengthened with a steel jacket and additional fill concrete is presented in this paper. A premade squared cross-section RC column was placed inside a steel tube, and then the space between the column and the tube was filled with additional concrete. A total of fourteen stub axially compressed columns, including nine strengthened specimens and five plain reinforced concrete specimens, were experimentally tested. The main parameter that was varied in the experiment was the compressive strength of the filler concrete. Three different concrete compression strength classes were used. Test results showed that all three cross-section parts (the core column, the fill, and the steel jacket) worked together in the force-carrying process through all load levels, even if only the basic RC column was loaded. The strengthened columns exhibited pronounced ductile behavior compared to the plain RC columns. The influence of the test parameters on the axial compressive strength was investigated. In addition, the specimen failure modes, strain development, and load vs. deformation relations were registered. The applicability of three different design codes to predict the axial bearing capacity of the strengthened columns was also investigated.


2012 ◽  
Vol 5 (3) ◽  
pp. 305-315
Author(s):  
P. P. Nascimento ◽  
R. B. Gomes ◽  
L. L. J. Borges ◽  
D. L. David

There are many problems involving cases of destruction of buildings and other structures. The columns can deteriorate for several reasons such as the evolution and changing habits of the loads. The experimental phase of this work was based on a test involving nine reinforced concrete columns under combined bending and axial compression, at an initial eccentricity of 60 mm. Two columns were used as reference, one having the original dimensions of the column and the other, monolithic, had been cast along the thickness of the strengthened piece. The remaining columns received a 35 mm thick layer of self-compacting concrete on their compressed face. For the preparation of the interface between the two materials, this surface was scarified and furrowed and connectors were inserted onto the columns' shear reinforcement in various positions and amounts.As connectors, 5 mm diameter steel bars were used (the same as for stirrups), bent in the shape of a "C" with 25 mm coatings. >As a conclusion, not only the quantity, but mainly, the location of the connectors used in the link between substrate and reinforcement is crucial to increase strength and to change failure mode.


2019 ◽  
Vol 35 (2) ◽  
pp. 1023-1043 ◽  
Author(s):  
Danilo Tarquini ◽  
João P. Almeida ◽  
Katrin Beyer

This data paper presents the quasi-static uniaxial cyclic tests of 24 reinforced concrete members, of which 22 feature lap splices and 2 are reference units with continuous reinforcement. The objective of the experimental program is to investigate the influence of lap splice length ( ls), confining reinforcement, and loading history on the behavior of lap splices. Particular attention is placed on the measurement of local deformation quantities, such as lap splice strains and rebar-concrete slip. Details of the geometry and reinforcement layout of the specimens as well as the employed test setup, instrumentation, and loading protocols are provided. The global behavior of the test units, including the observed crack pattern and failure modes, are discussed. The organization of the experimental data, which are made available for public use under DOI: 10.5281/zenodo.1205887, is outlined in detail.


2011 ◽  
Vol 105-107 ◽  
pp. 948-952
Author(s):  
Pin Wu Guan ◽  
Meng Chen

An experiment on shear capacity for HRB500 grade R/C frame columns within yield hinge regions is studied. The different failure modes for specimens within yield hinge regions are classified, and the hysteretic curves are studied. The shear contributions of stirrups and concrete for columns are analyzed in detail. Based on the experimental study, formulas for the shear capacity of reinforced concrete columns are supposed under seismic loading, and the different formulas are adopted to estimate the shear capacity for columns at different seismic levels, Both security and economy of structural design are all considered.


Author(s):  
Opabola Eyitayo ◽  
Kenneth J. Elwood

Poor seismic performance of older reinforced concrete buildings in past seismic events has frequently been attributed to failure of non-ductile columns not detailed for seismic demands. The Seismic Assessment of Existing Buildings Guidelines developed in New Zealand (NZ Guideline) provides a performance-based engineering framework for assessment of existing buildings, with concrete buildings covered in section C5. This study compares the probable failure mode and deformation capacity assessed based on NZ Guideline, ASCE/SEI 41-13, and ASCE/SEI 41-17 with the results from quasi-static cyclic tests conducted on 52 rectangular and 13 circular reinforced concrete columns with reinforcement details similar to those of non-ductile columns. Results indicate that the general curvature-based method of the NZ Guideline was not able to identify the observed failure mode but generally provides a conservative estimate of deformation capacity in comparison with ASCE/SEI 41-17. Based on the results of this study, a direct rotation-based acceptance criteria is proposed for NZ Guidelines. Also, slight modifications, to reduce conservatism, have been proposed for the curvature-based method.


Sign in / Sign up

Export Citation Format

Share Document