Seismic resilient three-stage enhancement for gas distribution network using computational optimization algorithms

Author(s):  
Chengcai Zong ◽  
Kun Ji ◽  
Ruizhi Wen ◽  
Xirong Bi ◽  
Yefei Ren ◽  
...  
2016 ◽  
Vol 53 (5) ◽  
pp. 43-53
Author(s):  
G. Klāvs ◽  
A. Kundziņa ◽  
I. Kudrenickis

Abstract Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.


2013 ◽  
Vol 07 (02) ◽  
pp. 1350005 ◽  
Author(s):  
GIAN PAOLO CIMELLARO ◽  
ALESSANDRO DE STEFANO ◽  
OMAR VILLA

The concept of disaster resilience has received considerable attention in recent years and it is increasingly used as an approach for understanding the dynamics of natural disaster systems. No models are available in literature to measure the performance of natural gas network, therefore, in this paper, a new performance index measuring functionality of gas distribution network have been proposed to evaluate the resilience index of the entire network. It can be used for any type of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network of the municipalities of Introdacqua and Sulmona, two small towns in the center of Italy which were affected by 2009 earthquake have been used as case study. Together the pipeline network covers an area of 136 km2, with 3 M/R stations and 16 regulation groups. The software SynerGEE has been used to simulate different scenario events. The numerical results showed that, during emergency, to ensure an acceptable delivery service, it is crucial to guarantee the functionality of the medium pressure gas distribution network. Instead to improve resilience of the entire network the best retrofit strategy is to include emergency shutoff valves along the pipes.


Author(s):  
Alex Takeo Yasumura Lima Silva ◽  
Fernando Das Graças Braga da Silva ◽  
André Carlos da Silva ◽  
José Antonio Tosta dos Reis ◽  
Claudio Lindemberg de Freitas ◽  
...  

 Inefficiency of sanitation companies’ operation procedures threatens the population’s future supplies. Thus, it is essential to increase water and energy efficiency in order to meet future demand. Optimization techniques are important tools for the analysis of complex problems, as in distribution networks for supply. Currently, genetic algorithms are recognized by their application in literature. In this regard, an optimization model of water distribution network is proposed, using genetic algorithms. The difference in this research is a methodology based on in-depth analysis of results, using statistics and the design of experimental tools and software. The proposed technique was applied to a theoretical network developed for the study. Preliminary simulations were accomplished using EPANET, representing the main causes of water and energy inefficiency in Brazilian sanitation companies. Some parameters were changed in applying this model, such as reservoir level, pipe diameter, pumping pressures, and valve-closing percentage. These values were established by the design of experimental techniques. As output, we obtained the equation of response surface, optimized, which resulted in values of established hydraulic parameters. From these data, the obtained parameters in computational optimization algorithms were applied, resulting in losses of 26.61%, improvement of 16.19 p.p. with regard to the network without optimization, establishing an operational strategy involving three pumps and a pressure-reducing valve.  We conclude that the association of optimization and the planning of experimental techniques constitutes an encouraging method to deal with the complexity of water-distribution network optimization.


Kybernetes ◽  
2018 ◽  
Vol 47 (6) ◽  
pp. 1217-1241 ◽  
Author(s):  
Jafar Razmi ◽  
Anis Hassani ◽  
Ashkan Hafezalkotob

Purpose Over the past two decades, in developed countries a trend towards the liberalization and restructuring of the gas market has been observed. Today, restructuring is an ongoing process. In this study, a restructured natural gas market has been considered in which several regional distribution companies have ownership of the network and are competing against each other to gain more benefits. The main purpose of this study is to achieve efficiency and economic rationality in such a market through horizontal cooperation. Design/methodology/approach A restructured natural gas distribution network is modeled as a cooperative game to estimate the potential cost savings for various collaboration scenarios. In addition, the cost savings’ allocation among collaborating companies is evaluated using the cooperative game theory. Findings The results reveal validity and efficiency of the solution of the proposed model and capabilities of the cooperative game theory for reduction in gas distribution costs and improvement in the service level. Research limitations/implications This study is limited to natural gas in one region of Yazd City in Iran. Moreover, one segment of the natural gas network (i.e. distribution network) is modeled. Moreover, long-term cooperation between companies relies on fair distribution of cooperation benefits to the participants. Practical implications For the purpose of comparison and to get an insight into properties of the cost savings game, the real case study of one region of Yazd city in Iran is implemented. Originality/value This study contributes to the competitive models in the restructured gas market, particularly, in gas distribution network. The main contribution is to provide potential benefits for the participants via the horizontal cooperation.


Author(s):  
Christian Brosig ◽  
Silvan Fassbender ◽  
Eberhard Waffenschmidt ◽  
Sebastian Janocha ◽  
Bernhard Klaassen

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Atul Rawat ◽  
Sumeet Gupta ◽  
T. Joji Rao

Purpose This study aims to identify and rank the operational and financial risks causing a delay in the commencement of the city gas distribution project in India. Design/methodology/approach This study reviews the literature to identify operational and financial risks variables associated with infrastructure projects. Followed by a survey to isolate and assess the critical risk factors for city gas distribution network project in India. The survey data is evaluated using factor analysis to understand the latent structure of the critical risk factors. Second, the author ranks the identified variables as per significance by using the mean score method. Findings Five critical risk factors with 20 variables were extracted and assessed to build more understanding of their significance and impact on city gas distribution network project. Originality/value This study is the first attempt to follow the management approach to identify and rank operational and financial risks impacting city gas distribution project.


Sign in / Sign up

Export Citation Format

Share Document