Experimental study and numerical simulation analysis on seismic performance of corrugated steel-plate shear wall with replaceable bottom corner dampers

2022 ◽  
Vol 152 ◽  
pp. 107061
Author(s):  
Wei Wang ◽  
Chao-chao Quan ◽  
Yu Li ◽  
Guo-Kai Zhen ◽  
Hao-Tian Zhao
2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jin-yu Lu ◽  
Lu-nan Yan ◽  
Yi Tang ◽  
Heng-hua Wang

To determine the force mechanism for the steel plate shear wall with slits, the pushover analysis method was used in this study. An estimated equation for the lateral bearing capacity which considered the effect of edge stiffener was proposed. A simplified elastic-plastic analytical model for the stiffened steel slit wall composed of beam elements was presented, where the effects of edge stiffeners were taken into account. The wall-frame analysis model was established, and the geometric parameters were defined. Pushover analysis of two specimens was carried out, and the analysis was validated by comparing the results from the experiment, the shell element model, and a simplified model. The simplified model provided a good prediction of the lateral stiffness and the strength of the steel slit wall, with less than 10% error compared with the experimental results. The mutual effects of the bearing wall and the frame were also predicted correctly. In the end, the seismic performance evaluation of a steel slit wall-frame structure was presented. The results showed that the steel slit wall could prevent the beams and columns from being damaged by an earthquake and that the steel slit wall was an efficient energy dissipation component.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 3181-3189 ◽  
Author(s):  
Abhishek Verma ◽  
Dipti Ranjan Sahoo

2011 ◽  
Vol 243-249 ◽  
pp. 1450-1455 ◽  
Author(s):  
Wan Lin Cao ◽  
Wen Jiang Zhang ◽  
Jian Wei Zhang ◽  
Hong Ying Dong

In view of the proposal of embedded steel plate concrete shear wall with concrete filled steel tube columns which contains a new kind shear connector of tie-bars through the circular holes linking concrete layers on both sides of the plate. In order to prove the seismic performance of walls with circular holes on the plate, three steel plate shear wall specimens, including the plate without holes bolted with columns, welded with columns, and the perforated plate welded with columns, were tested under cyclic loading. According to the results, the load-bearing capacity, ductility, energy dissipation, hysteretic behavior and failure phenomena were analyzed. It is showed that the load-bearing capacity of the three specimens were quite close. However, the wall with perforated steel plate has better ductility, energy dissipation and hysteretic behavior. So, it is an effective way to improve the seismic performance of walls by means of embedded perforated steel plate instead of ordinary ones.


2020 ◽  
Vol 11 (4) ◽  
pp. 499-527
Author(s):  
Morteza Jamshidi ◽  
Heydar Dashti NaserAbadi ◽  
Mohammadreza Oliaei

Purpose The high heat induced by fire can substantially decrease the load-bearing capacity, which is more critical in unprotected steel structures than concrete reinforced structures. One of the conventional steel structures is a steel-plate shear wall (SPSW) in which thin infill steel plates are used to resist against the lateral loads. Due to the small thickness of infill plates, high heat seems to dramatically influence the lateral load-bearing capacity of this type of structures. Therefore, this study aims to provide an investigation into the performance of SPSW with reduced beam section at high temperature. Design/methodology/approach In the present paper, to examine the seismic performance of SPSW at high temperature, 48 single-span single-story steel frames equipped with steel plates with the thicknesses of 2.64 mm, 5 mm and 7 mm and yield stresses of 85 MPa, 165 MPa, 256 MPa and 300 MPa were numerically modeled. Furthermore, their behavioral indices, namely, strength, stiffness, ductility and hysteresis behavior, were studied at the temperatures of 20, 458, 642 and 917? The simulated models in the present paper are based on the experimental specimen presented by Vian and Bruneau (2004). Findings The obtained results revealed that the high heat harshly diminishes the seismic performance of SPSW so that the lateral strength is reduced even by 95% at substantially high temperatures. Therefore, SPSW starts losing its strength and stiffness at high temperature such that it completely loses its capacity of strength, stiffness and energy dissipation at the temperature of 917? Moreover, it was proved that by separating the percentage of their participations variations of the infill plate in SPSW, their behavior and the bare frame can be examined even at high temperatures. Originality/value To the best of the authors’ knowledge, the seismic performance of SPSW at different temperatures has not been evaluated and compared yet.


2014 ◽  
Vol 578-579 ◽  
pp. 354-358
Author(s):  
Jian Hua Shao ◽  
Bai Jie Tang

Based on the time-history analysis principle of bidirectional equivalent tension rod of steel shear wall in this paper, the theory of Incremental Dynamic Analysis (IDA) is used to investigate the real seismic behavior of steel frame-steel plate shear wall (SPSW) system under a large number of natural earthquake waves and artificial simulated earthquake waves with the gradually increased scale of seismic intensity in order to achieve the base shear-roof displacement (V-Δ) curve under each earthquake wave action. Based on the principle of unidirectional equivalent tension rod, the pushover analysis is also used to obtain the curve of base shear and roof displacement under two different loading modes of uniform distribution and inverted triangular distribution. Through the above two different methods of seismic behavior evaluation, the achieved conclusions are as follows: The most V-Δ envelope curves obtained by IDA analysis are between V-Δ envelope curves obtained by pushover analysis under these two loading modes of inverted triangular and uniform distribution. With the increase of structural storey, the effect of high order mode on seismic behavior is more and more obvious and the deviation of calculation results derived from pushover is bigger and bigger. As a result, pushover analysis is only applied to evaluate seismic performance of structure at the middle or low storey. For the pushover, the structural bearing capacity and initial stiffness is underestimated, but the structural deformation capacity is overestimated under inverted triangular loading mode, Whereas, it is the opposite situation under the uniform distribution.


2014 ◽  
Vol 501-504 ◽  
pp. 563-567
Author(s):  
Zong Jing Li ◽  
Gan Ping Shu

When steel plate shear walls (SPSWs) are fitted into a long-span truss system, horizontal and vertical deformation should both be considered to evaluate the seismic performance of the structure. Numerical analysis is conducted to study the seismic performance of stiffened steel plate shear wall with opening subject to horizontal and vertical loading respectively based on a project. Results of the analysis indicate that stress distribution and deformation patterns of SPSW with opening are quite similar under horizontal and vertical loading. Stiffeners around the opening should be stretched to full height or width of the SPSW and strengthened by using larger thickness or width. The grids at the four corners of the opening are recommended to be further strengthened by additional stiffeners. SPSW with opening exhibits good hysteretic performance and energy dissipation in both loading directions.


Sign in / Sign up

Export Citation Format

Share Document