Shaking table test for seismic optimization of soil slope reinforced by new EPS pile under earthquake

2022 ◽  
Vol 154 ◽  
pp. 107140
Author(s):  
Li fang Pai ◽  
Hong gang Wu ◽  
Wei Guan ◽  
Hong Wei ◽  
Lin Tang
2020 ◽  
Vol 13 (6) ◽  
Author(s):  
Nan Li ◽  
Banqiao Wang ◽  
Liqun Yuan ◽  
Yuming Men ◽  
Jun Li ◽  
...  

Author(s):  
Yuka MATSUMOTO ◽  
Satoshi YAMADA ◽  
Ken OKADA ◽  
Masatoshi IDE ◽  
Toru TAKEUCHI ◽  
...  

2021 ◽  
Vol 232 ◽  
pp. 111808
Author(s):  
Xiushen Xia ◽  
Xiyin Zhang ◽  
Jinbo Wang

2013 ◽  
Vol 475-476 ◽  
pp. 1559-1562
Author(s):  
Jun Dai

The roof model of the palace timber buildings was established according to the construction technology of the Ying-tsao fa-shih. Based on its analysis of dynamic behavior with shaking table test and ANSYS finite element software, the dynamic behavior of structure and its maximal response under different conditions were gotten, and also the dynamic magnification factor of the beams layer and the whole structure were gotten, at last the results got by shaking table test was compared with the numerical simulation. Research shows that the nature frequency of the model is 1.486 Hz which is much bigger than that of the whole structure; the maximal displacement of beam layer gradually increases with the increase of ground motion intensity and the height of structure; the vibration isolation performance of semi-rigid tenon-mortise joints in rare earthquake (400gal) is better than that in moderate earthquake (220gal) and frequent earthquake (110gal); the dynamic magnification factor between layers was about 1, and roof 0.9 or so.


2014 ◽  
Vol 580-583 ◽  
pp. 1463-1466
Author(s):  
Yong Duo Liang ◽  
Xun Guo ◽  
Hua Wei Yi ◽  
Yong Zhen Li ◽  
Jin Zheng Jiang

Bottom-business multi-story masonry structure is widely used in small and middle towns in the southward in China. In the downtown of Beichuan county which affected by Wenchuan earthquake, more than 80% of this kind of building collapsed. But the Apartment of Beichuan Telecommunication Bureau behaved well earthquake resistant capacity with a moderate damage in the earthquake. The obvious difference between this building and others is the setting of winged columns in the front longitudinal wall of the first floor. For proving the influence of these members in the structure seismic capacity, the earthquake simulation shaking table test of 2 1/5 reduced scale models were designed and carried out. The models dynamic response, acceleration, displacement and strain were measured and collected, that model with winged columns behave well was testified. And the reinforcement method of balancing stiffness and increasing ductility is put forward. The results provide a foundation for the retrofitting design of the existing houses.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Weiwei Li ◽  
Weiqing Liu ◽  
Shuguang Wang ◽  
Dongsheng Du

The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification factors of acceleration, and displacements. The results show that the strengthened masonry structure shows much more excellent seismic capacity when compared with the unstrengthened one.


Sign in / Sign up

Export Citation Format

Share Document