Seismic response of soil slope reinforced by compression anchor and frame beam based on shaking table test

2020 ◽  
Vol 13 (6) ◽  
Author(s):  
Nan Li ◽  
Banqiao Wang ◽  
Liqun Yuan ◽  
Yuming Men ◽  
Jun Li ◽  
...  
2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Shuaihua Ye ◽  
Zhuangfu Zhao

Based on the equivalent mass-spring model and considering the coupling effect between creep soil and prestressed anchors, the dynamic calculation model of prestressed anchors with frame structure is established. The soil mass is expressed in the form of concentrated mass. The action of the frame structure on the soil is treated as a parallel coupling of a linear spring and a linear damper, and the free section of the anchor is treated as a linear spring. Considering the creep characteristics, the soil is regarded as a Generalized Kelvin body and the anchoring section of the anchor is regarded as an equivalent spring body, which are coupled in parallel. Considering the effect of slope height, the dynamic calculation model is solved and the seismic response is analyzed. Finally, an engineering example is used to verify the calculation method in this paper, and the results are compared with the shaking table test and numerical simulation. It shows that the calculation model proposed in this paper is safe and reasonable for the seismic design and analysis of the slope supported by prestressed anchors with frame structure.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Ling-Yun Peng ◽  
Ying-Jie Kang ◽  
Zong-Rui Lai ◽  
Yu-Ke Deng

A parameter optimization design method is proposed for multiple coal bucket dampers (CBDs) to reduce the seismic response of coal-fired power plants. To test the damping effect of the optimized CBDs, a 1 : 30 scale shaking table test model of a power plant structure was fabricated. A comparative testing program was conducted using three seismic excitations on a model with and without CBDs. A finite element analysis model, replicating the conditions of the shaking table test, was constructed for comparison, and the shock absorption effects of CBDs subjected to 22 groups of far-field seismic action and 28 groups of near-field seismic action were analyzed. Finally, the influence of changes in the structural period on the seismic response of the CBD-equipped structure was studied. The results indicate that the use of CBDs in a coal-fired power plant structure, based on an optimization design method for multiple-tuned mass dampers (MTMDs), results in a significant reduction in the structure displacement response, displays a certain discreteness under different excitations, and maintains a certain damping stability even as the structural period changes. Overall, the use of CBDs is a promising prospect for improving the seismic performance of coal-fired power plant structures.


2017 ◽  
Vol 11 (05) ◽  
pp. 1750020 ◽  
Author(s):  
Ma Xianfeng ◽  
Wang Guobo ◽  
Wu Jun ◽  
Ji Qianqian

Shaking table tests were conducted on typical models of subway structures subjected to several seismic shaking time histories to study seismic response of subway structures in soft ground as well as to provide data for validation of seismic design methods for underground structure. Three types of tests were presented herein, namely green field test, subway station test, and test for joint structure between subway station and tunnel. The similitude and modeling aspects of the 1g shaking table test are discussed. The seismic response of Shanghai clay in different depths was examined under different input waves to understand the acceleration amplification feature in both green field and in the presence of underground structure. Damage situation was checked on internal sections of both subway station and tunnels by halving the model structure. Structure deformation was investigated in terms of element strain under different earthquake loadings. The findings from this study provides useful pointers for future shaking table tests on underground structures/facilities, and the seismic response characteristic of underground structure derived from the shaking table test could be helpful for validating seismic design method for subway station.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guangyao Cui ◽  
Jianfei Ma

Tunnel portal sections always suffer serious damage under strong earthquakes. This paper aims to study the seismic performance of lining strengthening method in soft rock portal section by employing the model test. Firstly, the shaking table test considering the test cases, the modified input motions, the boundary condition, and monitoring equipment are conducted to simulate the seismic response of the soft tunnel portal section. Then, the lining strengthening method of increasing concrete grade is applied to the tunnel structure to study the aseismic performance of the soft rock tunnel portal section, and the seismic effects of the tunnel linings with different concrete grades are compared and analyzed. The result shows that the proportion of soft rock to total surrounding rock is the key factor affecting the seismic response of soft rock tunnel portal section; the larger the proportion of soft rock in surrounding rock, the more vulnerable the structure to earthquake damage; the seismic performance of the lining strengthening in hard rock portal is remarkable while limited in soft rock portal section. The stiffness and strength of the lining are larger than those of surrounding rock; the seismic performance of the soft portal section could hardly be improved only by the lining strengthening method. It is suggested to adopt both the structure strengthening and isolation method in the seismic design of soft portal section.


Sign in / Sign up

Export Citation Format

Share Document