Energy evaluation of rammed earth walls using long term in-situ measurements

Solar Energy ◽  
2017 ◽  
Vol 141 ◽  
pp. 70-80 ◽  
Author(s):  
Lucile Soudani ◽  
Monika Woloszyn ◽  
Antonin Fabbri ◽  
Jean-Claude Morel ◽  
Anne-Cécile Grillet
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Lisdelys González-Rodríguez ◽  
Amauri Pereira de Oliveira ◽  
Lien Rodríguez-López ◽  
Jorge Rosas ◽  
David Contreras ◽  
...  

Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Brian Helmuth ◽  
Francis Choi ◽  
Allison Matzelle ◽  
Jessica L. Torossian ◽  
Scott L. Morello ◽  
...  

2018 ◽  
Vol 22 (Suppl. 4) ◽  
pp. 1143-1155
Author(s):  
Vesna Lovec ◽  
Milica Jovanovic-Popovic ◽  
Branislav Zivkovic

The conducted research examines the thermal behaviour of the rammed earth walls, which is the basic structural and fa?ade element of traditional Vojvodina house. The traditional rammed earth house represents an important part of the total building stock of Vojvodina. Earth is a locally available, cheap, natural, environmentally friendly building material and has been used extensively for traditional family houses in Vojvodina. It has ecological and ?green? characteristics, which can be assessed as very high quality, and they are of significant importance in the context of sustainable development and striving to reduce energy consumption today. The research examines thermal behaviour of rammed earth wall, including theoretical analysis of: the heat transfer coefficient, U, the thermal resistance, R, and thermal conductivity, ?. One of the basic elements of thermal behaviour, the thermal mass, has been analyzed both theoretically and by measuring in situ. The in situ measurements were conducted on the traditional house in Vojvodina by measuring inside and outside surface wall and air temperature in summer. Analyses of rammed earth wall thermal performances have shown that the wall has low thermal conductivity, high heat capacity and significant thermal mass effect which is the key element enabling thermal stability. The research indicates rather good thermal properties of the rammed earth walls. Potential of rammed earth wall in Vojvodina should be an issue of further analysis, although the possibility of improvement of existing facilities to meet current standards in terms of energy efficiency should be considered.


2021 ◽  
Author(s):  
◽  
Edīte Biseniece

Legal requirements as well as life quality requirements demand to increase energy efficiency of existing buildings, that has been seen to represent a huge potential in energy savings, based on the size of the segment and the individual potential. The biggest challenges during the renovation of buildings occur when it comes to historic buildings where the facade cannot be modified to maintain its unique architectural appearance and integrity. Policy makers and building owners are facing “building energy efficiency versus heritage value” dilemma when on the one hand it is important to preserve a building’s architectural value and on the other hand, energy consumption should be reduced significantly. Internal insulation is one of the energy efficiency measures that can be applied. However, this is one of the most challenging and complex energy efficiency measures due to changes in boundary conditions and hygrothermal behaviour of walls, especially for buildings in cold climate Applying of interior insulation significantly modifies the hygrothermal performance of walls and, as a consequence, may induce a risk on interstitial condensation, frost damage, mould growth and other damage patterns. The behaviour of internally insulated wall strongly depends on the properties of the used materials. There is a need to develop new methods and guidelines for decision makers on how to implement energy efficiency measures in historic buildings. The aim of this Thesis is to offer safe and effective solutions for internal insulation systems of historic masonry buildings. To achieve this goal, the following tasks have been set: to perform historic construction material testing and analyse the test wall in a laboratory environment to determine the factors influencing the accumulation of moisture and the risks associated with it; to predict hygrothermal conditions of internally insulated masonry building using dynamic simulation program and to validate said models based on long term in-situ measurements in internally insulated case buildings; to estimate potential energy savings using dynamic simulation program. Several methods are combined within the research, including regression analysis, sensitivity analysis and heat and moisture transfer simulation validated by long-term in situ measurements.


2021 ◽  
Author(s):  
Duc Tran ◽  
Matthias Jacquet ◽  
Stuart Pearson ◽  
Romaric Verney

<p>Long term and high-frequency monitoring of water quality, particularly the suspended particulate matter (SPM) concentration are crucial to decipher the health and sustainable development of marine ecosystems. However, in-situ measurements based on indirect optical or acoustic techniques are often associated with large uncertainties due to the dynamics of natural SPM, especially throughout the land-sea continuum. Therefore, this study aims to improve the accuracy of long term in-situ measurements by quantitatively elucidating the physical mechanisms by which sand and fine sediment respond to multi-wavelength optical and multi-frequency acoustic signals. We <strong>hypothesize</strong> that whilst fine sediment is very sensitive to optical signals, the coarser particles are more sensitive to acoustic signals, and vice versa. We further <strong>hypothesize</strong> that the SPM compositions and variability can be differentiated and derived based on such sensitivities and differences in behaviors of sand and fine sediment under different types of signals, i.e., optical and acoustic. </p><p>Before testing the hypotheses, a novel laboratory device that is capable of 1) generating homogeneous suspended concentration and 2) providing sufficient space for multiple sensors to operate simultaneously must be developed. The new device, DEXMES (dispositive experimental de quantification des matières en suspension), primarily consists of two main components. The upper part is a cylindrical tank with an inner diameter of 0.96 m and 1.4 m high. To break up the large vortexes and mitigate the vortex-induced bubbles (e.g., generated by the impeller), four baffles with dimensions of 0.09 x 1.31 m are evenly attached to the inner side of the tank. The bottom part of the DEXMES device is a convex, elliptical Plexiglas bed. Turbulent flow is generated by an impeller with a diameter of 0.36 m placed approximately 1 m below the water surface. The speed of the impeller, ranging from 0 to 235 rpm, is regulated by a controller box.</p><p>To test the hypotheses, 30 experiments, consisting of 6 concentrations and 5 mixture ratios (by mass) of Bentonite and fine sand (d<sub>50</sub> = 100 µm), i.e., 100/0, 75/25, 50/50, 25/75, and 0/100, were thoroughly investigated using three acoustic sensors (ADV, AQUAscat, LISST-ABS) and three optical sensors (Wetlabs, HydroScat, LISST-100X). On average, each data point is the averaged value of 10 min of recording at 1 or 32 Hz. First, results show logarithmic/linear relationships between concentration and acoustic/optical signals respectively for a given bentonite/sand. Second, the slope of this relation is a function of the Bentonite/sand ratio. Third, the results confirm the hypotheses that coarser particles are more sensitive to acoustic signals and fine sediment is more sensitive to optical signals. Simple regression models were developed for different pairs of acoustic and optical sensors based on their relative sensitivity to SPM characteristics. The correlation coefficient, bias, and RMSE between observed and predicted concentrations then were examined. The results also show that it is possible to use a combination of one acoustic and one optical sensor to infer the concentration and the ratio of fine/coarse sediment in suspension with minimum use of water samples calibration.</p>


Sign in / Sign up

Export Citation Format

Share Document