scholarly journals A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Lisdelys González-Rodríguez ◽  
Amauri Pereira de Oliveira ◽  
Lien Rodríguez-López ◽  
Jorge Rosas ◽  
David Contreras ◽  
...  

Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Brian Helmuth ◽  
Francis Choi ◽  
Allison Matzelle ◽  
Jessica L. Torossian ◽  
Scott L. Morello ◽  
...  

Solar Energy ◽  
2017 ◽  
Vol 141 ◽  
pp. 70-80 ◽  
Author(s):  
Lucile Soudani ◽  
Monika Woloszyn ◽  
Antonin Fabbri ◽  
Jean-Claude Morel ◽  
Anne-Cécile Grillet

2021 ◽  
Author(s):  
Karolin S. Ferner ◽  
K. Heinke Schlünzen ◽  
Marita Boettcher

<p>Urbanisation locally modifies the regional climate: an urban climate develops. For example, the average wind speed in cities is reduced, while the gustiness is increased. Buildings induce vertical winds, which influence the falling of rain. All these processes lead to heterogeneous patterns of rain at ground and on building surfaces. The small-scale spatial rain heterogeneities may cause discomfort for people. Moreover, non-uniform wetting of buildings affects their hydrothermal performance and durability of their facades.</p><p>Measuring rain heterogeneities between buildings is, however, nearly impossible. Building induced wind gusts negatively influence the representativeness of in-situ measurements, especially in densely urbanised areas. Weather radars are usually too coarse and, more importantly, require an unobstructed view over the domain and thus do not measure ground precipitation in urban areas. Consequently, researchers turn to numerical modelling in order to investigate small-scale precipitation heterogeneities between buildings.</p><p>In building science, numerical models are used to investigate rain heterogeneities typically focussing on single buildings and vertical facades. Only few studies were performed for more than a single building or with inclusion of atmospheric processes such as radiation or condensation. In meteorology, increasing computational power now allows the use of small-scale obstacle-resolving models resolving atmospheric processes while covering neighbourhoods.</p><p>In order to assess rain heterogeneities between buildings we extended the micro-scale and obstacle-resolving transport- and stream model MITRAS (Salim et al. 2019). The same cloud microphysics parameterisation as in its mesoscale sister model METRAS (Schlünzen et al., 2018) was applied and boundary conditions for cloud and rain water content at obstacle surfaces were introduced. MITRAS results are checked for plausibility using radar and in-situ measurements (Ferner et al., 2021). To our knowledge MITRAS is the first numerical urban climate model that includes rain and simulates corresponding processes.</p><p>Model simulations were initialised for various wind speeds and mesoscale rain rates to assess their influence on the heterogeneity of falling rain in a domain of 1.9 x 1.7 km² around Hamburg City Hall. We investigated how wind speed or mesoscale rain rate influence the precipitation patterns at ground and at roof level. Based on these results we assessed the height dependence of precipitation. First analyses show that higher buildings receive more rain on their roofs than lower buildings; the results will be presented in detail in our talk.</p><p>Ferner, K.S., Boettcher, M., Schlünzen, K.H. (2021): Modelling the heterogeneity of rain in an urban neighbourhood. Publication in preparation</p><p>Salim, M.H., Schlünzen, K.H., Grawe, D., Boettcher, M., Gierisch, A.M.U., Fock B.H. (2018): The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory. Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018.</p><p>Schlünzen, K.H., Boettcher, M., Fock, B.H., Gierisch, A.M.U., Grawe, D., and Salim, M. (2018): Scientific Documentation of the Multiscale Model System M-SYS. Meteorological Institute, Universität Hamburg. MEMI Technical Report 4</p>


Author(s):  
Shiwani Gupta ◽  
Animesh Gupta ◽  
M. Nehal ◽  
Kalyani Pandey ◽  
Ananta Kreesna ◽  
...  

Background: Cataract is considered as one of the most common causes of visual impairment and the leading cause of blindness in the world. Age related cataract occurs in people above 50 years of age and the its pathogenesis is multifactorial. Therefore, the present study was aimed to assess the prevalence and risk factors for cataract.Methods: Community based cross sectional study was conducted among adults residing at urban areas of South Bihar. The data was collected by interview method, using pre-tested semi-structured questionnaire which contains socio-demographic data, dietary habits, history of diabetes or hypertension, family history of cataract and long-term sun exposure.Results: Among 240 participants, 94 (39.2%) were male and 146 (60.8%) were female. Maximum participants were aged more than 70 years. The prevalence of cataract was 52.1%.Conclusions: The prevalence of cataract was quite high and was significantly associated with age, long term sun exposure and family history of cataract.


2021 ◽  
Author(s):  
◽  
Edīte Biseniece

Legal requirements as well as life quality requirements demand to increase energy efficiency of existing buildings, that has been seen to represent a huge potential in energy savings, based on the size of the segment and the individual potential. The biggest challenges during the renovation of buildings occur when it comes to historic buildings where the facade cannot be modified to maintain its unique architectural appearance and integrity. Policy makers and building owners are facing “building energy efficiency versus heritage value” dilemma when on the one hand it is important to preserve a building’s architectural value and on the other hand, energy consumption should be reduced significantly. Internal insulation is one of the energy efficiency measures that can be applied. However, this is one of the most challenging and complex energy efficiency measures due to changes in boundary conditions and hygrothermal behaviour of walls, especially for buildings in cold climate Applying of interior insulation significantly modifies the hygrothermal performance of walls and, as a consequence, may induce a risk on interstitial condensation, frost damage, mould growth and other damage patterns. The behaviour of internally insulated wall strongly depends on the properties of the used materials. There is a need to develop new methods and guidelines for decision makers on how to implement energy efficiency measures in historic buildings. The aim of this Thesis is to offer safe and effective solutions for internal insulation systems of historic masonry buildings. To achieve this goal, the following tasks have been set: to perform historic construction material testing and analyse the test wall in a laboratory environment to determine the factors influencing the accumulation of moisture and the risks associated with it; to predict hygrothermal conditions of internally insulated masonry building using dynamic simulation program and to validate said models based on long term in-situ measurements in internally insulated case buildings; to estimate potential energy savings using dynamic simulation program. Several methods are combined within the research, including regression analysis, sensitivity analysis and heat and moisture transfer simulation validated by long-term in situ measurements.


Sign in / Sign up

Export Citation Format

Share Document