Simulation of innovative high efficiency perovskite solar cell with Bi-HTL: NiO and Si thin films

Solar Energy ◽  
2019 ◽  
Vol 186 ◽  
pp. 323-327 ◽  
Author(s):  
Weihong Chang ◽  
Hanmin Tian ◽  
Guochuan Fang ◽  
Dan Guo ◽  
Zheng Wang ◽  
...  
2019 ◽  
Vol 9 (4) ◽  
pp. 1025-1030 ◽  
Author(s):  
Yangyi Yao ◽  
Wei-Lun Hsu ◽  
Mario Dagenais

2016 ◽  
Vol 4 (42) ◽  
pp. 16536-16545 ◽  
Author(s):  
Kári Sveinbjörnsson ◽  
Kerttu Aitola ◽  
Jinbao Zhang ◽  
Malin B. Johansson ◽  
Xiaoliang Zhang ◽  
...  

A mixed-ion (FAPbI3)1−x(MAPbBr3)x perovskite solar cell was prepared under ambient conditions with an average efficiency of 17.6%.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Farhana Anwar ◽  
Rafee Mahbub ◽  
Sakin Sarwar Satter ◽  
Saeed Mahmud Ullah

Simulation has been done using SCAPS-1D to examine the efficiency of CH3NH3SnI3-based solar cells including various HTM layers such as spiro-OMeTAD, Cu2O, and CuSCN. ZnO nanorod array has been considered as an ETM layer. Device parameters such as thickness of the CH3NH3SnI3 layer, defect density of interfaces, density of states, and metal work function were studied. For optimum parameters of all three structures, efficiency of 20.21%, 20.23%, and 18.34% has been achieved for spiro-OMeTAD, Cu2O, and CuSCN, respectively. From the simulations, an alternative lead-free perovskite solar cell is introduced with the CH3NH3SnI3 absorber layer, ZnO nanorod ETM layer, and Cu2O HTM layer.


1999 ◽  
Vol 569 ◽  
Author(s):  
L. Wang ◽  
I. Eisgruber ◽  
R. Hollingsworth ◽  
C. DeHart ◽  
T. Wangensteen ◽  
...  

ABSTRACTManufacturable, sputtered, device-quality, CdS thin films are reported for high efficiency solar cell applications. The sputtering plasma is monitored during deposition using optical emission spectroscopy. Optical emission spectroscopy (OES) is commonly used as an end point detector in plasma etching processes, where the disappearance of the etch product wavelength signature provides an unambiguous indication of completion. OES is only now beginning to be examined for controlling deposition processes, primarily because the dependence between OES signal and film properties can frequently be a quite complex function of the electron and gas densities, the emitting species concentration, the electron impact excitation cross section, the electron energy distribution function, and the probability of inelastic collisions between plasma species. OES monitoring during CdS sputtering allows accurate determination of deposition rate. Both Cd and S emission peaks can be identified, allowing tracking of the results of preferential sputtering. The OES output has been tied directly into the chamber controls, resulting in automatic closed-loop control of deposition rate. The resulting CdS films are device-quality and well-suited to large-scale manufacturing. A photovoltaic efficiency of 12.1 % was obtained from sputtered CdS on CIGS absorber, compared to 12.9% for the traditional, but less manufacturable, chemical bath deposited CdS on the same batch of CIGS. The sputtering technique has many advantages over other deposition techniques, such as easy scaleablity to large areas, simple process control, compatibility with in-line manufacturing of layered devices and low cost. RF, or lower-cost pulsed DC, sputtering power supplies can be used with comparable deposition rates. The structure, optical, and electrical properties of the sputtered CdS thin films have been characterized.


Nano Energy ◽  
2020 ◽  
Vol 71 ◽  
pp. 104567 ◽  
Author(s):  
Yuxi Dou ◽  
Ziwen Liu ◽  
Zhengli Wu ◽  
Yifan Liu ◽  
Jing Li ◽  
...  

2020 ◽  
Vol 10 (37) ◽  
pp. 2001567 ◽  
Author(s):  
Shih‐Han Huang ◽  
Cheng‐Kang Guan ◽  
Pei‐Huan Lee ◽  
Hung‐Che Huang ◽  
Chia‐Feng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document