scholarly journals Investigation of temperature coefficients of PV modules through field measured data

Solar Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 425-439
Author(s):  
Basant Raj Paudyal ◽  
Anne Gerd Imenes
Author(s):  
Ville Valtavirta ◽  
Antti Rintala ◽  
Unna Lauranto

Abstract The Serpent Monte Carlo code and the Serpent-Ants two step calculation chain are used to model the hot zero power physics tests described in the BEAVRS benchmark. The predicted critical boron concentrations, control rod group worths and isothermal temperature coefficients are compared between Serpent and Serpent-Ants as well as against the experimental measurements. Furthermore, radial power distributions in the unrodded and rodded core configurations are compared between Serpent and Serpent-Ants. In addition to providing results using a best practices calculation chain, the effects of several simplifications or omissions in the group constant generation process on the results are estimated. Both the direct and two-step neutronics solutions provide results close to the measured values. Comparison between the measured data and the direct Serpent Monte Carlo solution yields RMS differences of 12.1 mg/kg, 25.1 × 10-5 and 0.67 × 10-5 K-1 for boron, control rod worths and temperature coefficients respectively. The two-step Serpent-Ants solution reaches a similar level of accuracy with RMS differences of 17.4 mg/kg, 23.6 × 10-5 and 0.29 × 10-5 K-1. The match in the radial power distribution between Serpent and Serpent-Ants was very good with the RMS and maximum for pin power errors being 1.31 % and 4.99 % respectively in the unrodded core and 1.67 %(RMS) and 8.39 % (MAX) in the rodded core.


2011 ◽  
Vol 95 (1) ◽  
pp. 386-389 ◽  
Author(s):  
Tetsuyuki Ishii ◽  
Kenji Otani ◽  
Takumi Takashima ◽  
Shinji Kawai

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Radouane Ouladsine ◽  
Rachid Outbib ◽  
Mohamed Bakhouya

The degradation of photovoltaic (PV) modules remains a major concern on the control and the development of the photovoltaic field, particularly, in regions with difficult climatic conditions. The main degradation modes of the PV modules are corrosion, discoloration, glass breaks, and cracks of cells. However, corrosion and discoloration remain the predominant degradation modes that still require further investigations. In this paper, a model-based PV corrosion prognostic approach, based on an ensemble Kalman filter (EnKF), is introduced to identify the PV corrosion parameters and then estimate the remaining useful life (RUL). Simulations have been conducted using measured data set, and results are reported to show the efficiency of the proposed approach.


2018 ◽  
Vol 6 (1) ◽  
pp. 35
Author(s):  
Joel A. Ezenwora ◽  
David O. Oyedum ◽  
Paulinus E. Ugwuoke

There is need to always obtain the realistic outdoor performance variables of Photovoltaic (PV) module in a location for efficient PV power system sizing and design. Outdoor performance evaluation was carried out on three types of commercially available silicon PV modules rated 10 W each, using CR1000 software-based Data Acquisition System (DAS). The PV modules under test and meteorological sensors were installed on a metal support structure at the same test plane.The data monitoring was from 08.00 to 18.00 hours each day continuously for a period of one year, from December 2014 to November 2015. Maximum values of module efficiencies of 5.86% and 10.91% for the monocrystalline and polycrystalline modules were respectively recorded at irradiance of 375 W/m2, while the amorphous efficiency peaked at 3.61 % with irradiance of 536.5 W/m2. At 1000 W/m2 the efficiencies reduced to 3.30 %, 6.20 % and 2.25 % as against manufacturer’s specifications of 46 %, 48 % and 33 % for the monocrystalline, polycrystalline and amorphous modules respectively. The maximum power output achieved for the modules at irradiance of 1000 W/m2 were 0.711 W, 1.323 W and 0.652 W for the monocrystalline, polycrystalline and amorphous PV modules, respectively. Accordingly, Module Performance Ratios for the PV modules investigated were 0.07, 0.13 and 0.07, respectively. The rate of variation of module response variables with irradiance and temperature was determined using a linear statistical model given as Y= a + bHg+ c Tmod. The approach performed creditably when compared with measured data.


2018 ◽  
Vol 8 (4) ◽  
pp. 960-968 ◽  
Author(s):  
Juan Lopez-Garcia ◽  
Diego Pavanello ◽  
Tony Sample

2016 ◽  
Vol 136 (6) ◽  
pp. 759-766 ◽  
Author(s):  
Yu Fujita ◽  
Hiroshi Kobayashi ◽  
Takanori Kodera ◽  
Mutsumi Aoki ◽  
Hiroto Suzuki ◽  
...  

2019 ◽  
Vol 139 (9) ◽  
pp. 584-591
Author(s):  
Takumi Takashima ◽  
Kazuaki Ikeda

Sign in / Sign up

Export Citation Format

Share Document