laboratory characterization
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 80)

H-INDEX

29
(FIVE YEARS 3)

Chemosphere ◽  
2022 ◽  
Vol 288 ◽  
pp. 132478
Author(s):  
Jordan M. Couture ◽  
Zachary C. Redman ◽  
Jake Bozzini ◽  
Robert Massengill ◽  
Kristine Dunker ◽  
...  

2022 ◽  
Author(s):  
Salvatore Ameduri ◽  
Monica Ciminello ◽  
Antonio Concilio ◽  
Ignazio Dimino ◽  
Galasso Bernardino ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 13479
Author(s):  
Cameron Hopkins ◽  
Donald Cameron ◽  
Md Mizanur Rahman

Many roads that were initially designed for relatively low traffic volumes need re-surfacing or partial replacement of the unbound granular material to satisfy current traffic demand. Significant research efforts based on laboratory studies have been seen in the literature to characterize the suitability of virgin materials, which is relatively expensive and unsustainable. Therefore, the object of this study is the in situ recycling of existing materials in two road sections by improving their properties with a suitable additive. A hydrophobic synthetic polymer was chosen for two trials due to the high plasticity of fines of the in situ materials and a high chance of water intrusion in the low-lying plains in Adelaide. The extensive laboratory characterization shows that hydrophobicity is imparted in capillary rise tests, improved drainage in permeability tests, and greater matric suction at the same moisture content. Furthermore, the unconfined compressive strength was increased. The repeated loading triaxial testing showed higher stiffness and lowered permanent strain to withstand higher traffic volume. In general, in situ recycling is adaptable and considered to be cheaper and sustainable. The estimated current costs and carbon footprints are presented for re-construction and in situ recycling with dry powder polymer, or solely with lime, to help construction planning.


Author(s):  
Yunzhong Jia ◽  
Zhaohui Lu ◽  
Qiquan Xiong ◽  
Jesse C. Hampton ◽  
Ye Zhang ◽  
...  

2021 ◽  
Vol 11 (19) ◽  
pp. 8807
Author(s):  
Daniele Colarossi ◽  
Paolo Principi

The operative temperature of a photovoltaic cell influences the electric conversion yield. This can be enhanced by cooling the panel. Among the studied solutions, phase change materials (PCM) exploit latent heat and absorb a large amount of energy at a nearly constant temperature. PCMs suffer from a low thermal conductivity. Under these premises the paper presents a hybrid graphene/fins/PCM cooling system to maximize efficiency gains and thermal recovery. An indoor laboratory characterization, under a solar simulator, compares the proposed model with a reference one (an identical, simple PV module) under fixed environmental conditions. Outdoor tests investigate the performances of the two systems under natural conditions. Indoor results show that the front temperature of the proposed PCM integrated module is averagely 6 °C less, with a peak of 8 °C, than the reference case. This means an increase in the electric yield of about 3%. Outdoor investigations prove that, when the PCM is solid and during the melting phase, the proposed system is averagely 1.12 °C and 4.87 °C colder than the reference case, respectively. The thermal efficiency is 30% and 65%, respectively. Once the melting process is completed, the performance becomes worse, and the hybrid panel is almost 3 °C warmer than the simple panel.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pier Luigi Meroni ◽  
Maria Orietta Borghi

Antiphospholipid antibodies (aPL) are mandatory for the diagnosis but are also a risk factor for the antiphospholipid syndrome (APS) clinical manifestations. Lupus anticoagulant (LA), anticardiolipin (aCL), and anti-beta2 glycoprotein I (β2GPI) assays are the formal laboratory classification/diagnostic criteria. Additional nonclassification assays have been suggested; among them, antiphosphatidylserine-prothrombin (aPS/PT) and antidomain 1 β2GPI antibodies are the most promising ones although not yet formally accepted. aPL represent the example of a laboratory test that moved from dichotomous to quantitative results consistent with the idea that reporting quantitative data offers more diagnostic/prognostic information for both vascular and obstetric manifestations. Although the general rule is that the higher the aPL titer, the higher the test likelihood ratio, there is growing evidence that this is not the case for persistent low titers and obstetric events. LA displays the highest diagnostic/prognostic power, although some isolated LAs are apparently not associated with APS manifestations. Moreover, isotype characterization is also critical since IgG aPL are more diagnostic/prognostic than IgA or IgM. aPL are directed against two main autoantigens: β2GPI and PT. However, anti-β2GPI antibodies are more associated with the APS clinical spectrum. In addition, there is evidence that anti-β2GPI domain 1 antibodies display a stronger diagnostic/prognostic value. This finding supports the view that antigen and even epitope characterization represents a further step for improving the assay value. The strategy to improve aPL laboratory characterization is a lesson that can be translated to other autoantibody assays in order to improve our diagnostic and prognostic power.


Sign in / Sign up

Export Citation Format

Share Document