scholarly journals Phase transition for extremes of a stochastic model with long-range dependence and multiplicative noise

Author(s):  
Olivier Durieu ◽  
Yizao Wang
Author(s):  
Christian L. E. Franzke ◽  
Timothy Graves ◽  
Nicholas W. Watkins ◽  
Robert B. Gramacy ◽  
Cecilia Hughes

Long-range dependence (LRD) and non-Gaussianity are ubiquitous in many natural systems such as ecosystems, biological systems and climate. However, it is not always appreciated that the two phenomena may occur together in natural systems and that self-similarity in a system can be a superposition of both phenomena. These features, which are common in complex systems, impact the attribution of trends and the occurrence and clustering of extremes. The risk assessment of systems with these properties will lead to different outcomes (e.g. return periods) than the more common assumption of independence of extremes. Two paradigmatic models are discussed that can simultaneously account for LRD and non-Gaussianity: autoregressive fractional integrated moving average (ARFIMA) and linear fractional stable motion (LFSM). Statistical properties of estimators for LRD and self-similarity are critically assessed. It is found that the most popular estimators can be biased in the presence of important features of many natural systems like trends and multiplicative noise. Also the LRD and non-Gaussianity of two typical natural time series are discussed.


2020 ◽  
Vol 57 (4) ◽  
pp. 1234-1251
Author(s):  
Shuyang Bai

AbstractHermite processes are a class of self-similar processes with stationary increments. They often arise in limit theorems under long-range dependence. We derive new representations of Hermite processes with multiple Wiener–Itô integrals, whose integrands involve the local time of intersecting stationary stable regenerative sets. The proof relies on an approximation of regenerative sets and local times based on a scheme of random interval covering.


Author(s):  
Jan Beran ◽  
Britta Steffens ◽  
Sucharita Ghosh

AbstractWe consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.


2006 ◽  
Vol 16 (18) ◽  
pp. 1331-1338 ◽  
Author(s):  
Christos Christodoulou-Volos ◽  
Fotios M. Siokis

Sign in / Sign up

Export Citation Format

Share Document