Integrating remote sensing and machine learning into environmental monitoring and assessment of land use change

2021 ◽  
Vol 27 ◽  
pp. 1239-1254
Author(s):  
Hong Anh Thi Nguyen ◽  
Tip Sophea ◽  
Shabbir H. Gheewala ◽  
Rawee Rattanakom ◽  
Thanita Areerob ◽  
...  
Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


Author(s):  
Eda Ustaoglu ◽  
Arif Çagdaş Aydinoglu

Land-use change models are tools to support analyses, assessments, and policy decisions concerning the causes and consequences of land-use dynamics, by providing a framework for the analysis of land-use change processes and making projections for the future land-use/cover patterns. There is a variety of modelling approaches that were developed from different disciplinary backgrounds. Following the reviews in the literature, this chapter focuses on various modelling tools and practices that range from pattern-based methods such as machine learning and GIS (Geographic Information System)-based approaches, to process-based methods such as structural economic or agent-based models. For each of these methods, an overview is given for the advances that have been progressed by geographers, natural and economy scientists in developing these models of spatial land-use change. It is noted that further progress is needed in terms of model development, and integration of models operating at various scales that better address the multi-scale characteristics of the land-use system.


2019 ◽  
Vol 171 ◽  
pp. 104003
Author(s):  
Gino Caspari ◽  
Simon Donato ◽  
Michael Jendryke

Sign in / Sign up

Export Citation Format

Share Document