scholarly journals Robust Optimization of Sustainable Closed-Loop Supply Chain Considering Carbon Emission Schemes

Author(s):  
Hêriş Golpîra ◽  
Ahvan Javanmardan
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saman Esmaeilian ◽  
Dariush Mohamadi ◽  
Majid Esmaelian ◽  
Mostafa Ebrahimpour

Purpose This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits. Design/methodology/approach The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied. Findings According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner. Originality/value This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 466 ◽  
Author(s):  
Mowmita Mishra ◽  
Soumya Kanti Hota ◽  
Santanu Kumar Ghosh ◽  
Biswajit Sarkar

Considering the increasing number of end-of-life goods in the context of improving the ambience and health of a population and their destructive impacts, recycling strategies are important for industries and organizations. In this article, a closed-loop supply chain management containing a single manufacturer, a single retailer, and a third party is introduced in which the manufacturer first propagates newly finished goods and then dispatches some of the finished goods to the retailer considering a single-setup multi-delivery policy. Due to shipping, carbon emission is taken into account as well as a carbon emission trading mechanism to curb the amount of carbon emissions by the retailer. For recycling through collection, inspection, remanufacturing, and landfill, the third party collects the end-of-life goods from its customers and ships perfect products to the manufacturer after a two-stage inspection. In this model, major sources of emissions such as shipping, replenishment orders, and inventory have been taken care of. The minimizing of the total cost relating to the container capacity, shipment numbers, and replenishment cycle length is the main objective of the closed-loop supply chain management for making the system more profitable. Expository numerical explorations, analysis, and graphic representations are conferred to elucidate this model, and it is observed that this model saves some percentage of the cost compared to the existing literature.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Xiao-qing Zhang ◽  
Xi-gang Yuan ◽  
Da-lin Zhang

In manufacturer-led closed-loop supply chain (CLSC) with two competing retailers, the retailer-1 recycles WEEE whose fixed recycling cost is asymmetric information. Using dynamics game theory and principal-agent theory, three dynamic game models are built including (1) benchmark model without reward-penalty mechanism (RPM); (2) decentralized model with carbon emission RPM; (3) decentralized model with carbon emission RPM and recovery rate RPM. This paper discusses the influence of RPM and retailers competition on the CLSC and members benefits. The results show that (1) the carbon emission RPM increases retail price, but decreases the WEEE recycling motivation usually. On the contrary, the recovery rate RPM guides WEEE recycling and lowers the retail price effectively. (2) In any case, the retailer-1’s profit is higher than that of the retailer-2; apparently it suggests that the retailer recycling WEEE gains competitive advantages. Furthermore, both the recovery rate RPM and retailers competition are beneficial to improve the competitive advantage. The relationship between two retailers’ retail price is affected by many complicated factors. (3) The WEEE buyback price and WEEE recovery rate with high fixed recycling cost (H-type) are always higher than that of low fixed recycling cost (L-type), respectively, which means that the H-type fixed recycling cost has scale advantages; the greater the reward-penalty intensity and the fiercer the competition, the more obvious the scale advantages under certain condition. (4) The retailers’ competition can not only guide WEEE recycling but also improve retailers’ profits. Meanwhile, the impact of competition on the manufacturer is related to RPM, but the fierce competition decreases the manufacturer’s profit.


Sign in / Sign up

Export Citation Format

Share Document