Effects of electric field and biaxial strain on the (NO2, NO, O2, and SO2) gas adsorption properties of Sc2CO2 monolayer

2021 ◽  
pp. 107135
Author(s):  
Khang D. Pham ◽  
Pham Cong Dinh ◽  
Do Van Diep ◽  
Tuan V. Vu ◽  
Hai L. Luong ◽  
...  
2021 ◽  
Vol 23 (10) ◽  
pp. 6171-6181
Author(s):  
Yaoqi Gao ◽  
Baozeng Zhou ◽  
Xiaocha Wang

It is found that the biaxial strain, electric field and interlayer distance can effectively modulate the electronic structure and magnetic properties of two-dimensional van der Waals heterostructures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1205
Author(s):  
Alejandro Orsikowsky-Sanchez ◽  
Christine Franke ◽  
Alexander Sachse ◽  
Eric Ferrage ◽  
Sabine Petit ◽  
...  

A set of three commercial zeolites (13X, 5A, and 4A) of two distinct shapes have been characterized: (i) pure zeolite powders and (ii) extruded spherical beads composed of pure zeolite powders and an unknown amount of binder used during their preparation process. The coupling of gas porosimetry experiments using argon at 87 K and CO2 at 273 K allowed determining both the amount of the binder and its effect on adsorption properties. It was evidenced that the beads contain approximately 25 wt% of binder. Moreover, from CO2 adsorption experiments at 273 K, it could be inferred that the binder present in both 13X and 5A zeolites does not interact with the probe molecule. However, for the 4A zeolite, pore filling pressures were shifted and strong interaction with CO2 was observed leading to irreversible adsorption of the probe. These results have been compared to XRD, IR spectroscopy, and ICP-AES analysis. The effect of the binder in shaped zeolite bodies can thus have a crucial impact on applications in adsorption and catalysis.


2013 ◽  
Vol 66 (23) ◽  
pp. 4093-4106 ◽  
Author(s):  
Mürsel Arici ◽  
Okan Zafer Yeşılel ◽  
Seda Keskın ◽  
Onur Şahın ◽  
Orhan Büyükgüngör

2019 ◽  
Author(s):  
Jonathan Carney ◽  
David Roundy ◽  
Cory M. Simon

Metal-organic frameworks (MOFs) are modular and adjustable nano-porous materials with applications in gas storage, separations, and sensing. Flexible/dynamic components that respond to adsorbed gas can give MOFs unique or enhanced adsorption properties. Here, we explore the adsorption properties that could be imparted to a MOF by a rotaxane molecular shuttle (RMS) in its pores. In an RMS-MOF, a macrocyclic wheel is mechanically interlocked with a strut. The wheel shuttles between stations on the strut that are also gas adsorption sites. We pose and analyze a simple statistical thermodynamic model of gas adsorption in an RMS-MOF that accounts for (i) wheel/gas competition for sites on the strut and (ii) the entropy endowed by the shuttling wheel. We determine how the amount of gas adsorbed, position of the wheel, and energy change upon adsorption depend on temperature, pressure, and the interactions of the gas/wheel with the stations. Our model reveals that, compared to an ordinary Langmuir material, the chemistry of the RMS-MOF can be tuned to render adsorption more or less temperature-sensitive and release more or less heat upon adsorption. The model also uncovers a non-monotonic relationship between temperature and the position of the wheel if gas out-competes the wheel for its preferable station.


2020 ◽  
Author(s):  
Jonathan Carney ◽  
David Roundy ◽  
Cory M. Simon

Metal-organic frameworks (MOFs) are modular and tunable nano-porous materials with applications in gas storage, separations, and sensing. Flexible/dynamic components that respond to adsorbed gas can give MOFs unique or enhanced adsorption properties. Here, we explore the adsorption properties that could be imparted to a MOF by a rotaxane molecular shuttle (RMS) in its pores. In the unit cell of an RMS-MOF, a macrocyclic wheel is mechanically interlocked with a strut of the MOF scaffold. The wheel shuttles between stations on the strut that are also gas adsorption sites. At a level of abstraction similar to the seminal Langmuir adsorption model, we pose and analyze a simple statistical mechanical model of gas adsorption in an RMS-MOF that accounts for (i) wheel/gas competition for sites on the strut and (ii) gas-induced changes in the configurational entropy of the shuttling wheel. We determine how the amount of gas adsorbed, position of the wheel, and differential energy of adsorption depend on temperature, pressure, and the interactions of the gas/wheel with the stations. Our model reveals that, compared to a rigid, Langmuir material, the chemistry of the RMS-MOF can be tuned to render gas adsorption more or less temperature-sensitive and to release more or less heat upon adsorption. The model also uncovers a non-monotonic relationship between the temperature and the position of the wheel if gas out-competes the wheel for its preferable station.


2018 ◽  
Vol 47 (27) ◽  
pp. 8983-8991 ◽  
Author(s):  
Minghui He ◽  
Yao Wang ◽  
Xiaoxia Gao ◽  
Saidan Li ◽  
Yabing He

The positional effect of the methyl group on structures and gas adsorption properties was explored in a copper-based MOF platform constructed from bent diisophthalate ligands bearing the methyl group at different positions.


2018 ◽  
Vol 5 (6) ◽  
pp. 1423-1431 ◽  
Author(s):  
Dongjie Bai ◽  
Xiaoxia Gao ◽  
Minghui He ◽  
Yao Wang ◽  
Yabing He

The positional effect of nitrogen functional sites on the structural stability and gas adsorption property was explored in a family of ssa-type MOFs.


Sign in / Sign up

Export Citation Format

Share Document