In situ high temperature XRD study of Sr-doped ceramics La0.95Sr0.05MnO3+δ

2021 ◽  
pp. 114401
Author(s):  
Diana Pchelina ◽  
Vera Sedykh ◽  
Oxana Rybchenko ◽  
Bernard Fraisse ◽  
Moulay Tahar Sougrati
2021 ◽  
pp. 130816
Author(s):  
Tayebeh Sharifi ◽  
Drazan Jozić ◽  
Marin Kovacic ◽  
Hrvoje Kusic ◽  
Ana Loncaric Bozic

2016 ◽  
Vol 840 ◽  
pp. 375-380
Author(s):  
Meor Yusoff Meor Sulaiman ◽  
Khaironie Mohamed Takip ◽  
Ahmad Khairulikram Zahari

The high temperature phase transition of zirconia produced from commercial zirconyl chloride chemical was compared with that produced from a Malaysian zircon mineral. Zirconyl chloride was produced from zircon by using the hydrothermal fusion method. Initial XRD diffractogram of these samples at room temperature show that they are of amorphous structure. High temperature XRD studies was then performed on these samples; heated up to 1500°C. The XRD diffractograms shows that the crystalline structure of tetragonal zirconia was first observed and the monoclinic zirconia becomes more visible at higher heating temperature.


1984 ◽  
Vol 28 ◽  
pp. 331-338 ◽  
Author(s):  
S. S. Iyengar ◽  
P. Engler ◽  
M. W. Santana ◽  
E. R. Wong

Thermal analysts have exploited the sensitivity of carbonate mineral decomposition to furnace atmosphere as a diagnostic tool for identifying and quantifying these minerals in mixtures and solid solutions (1-3). However, thermal analysis techniques alone cannot reveal information about the reaction products after each thermal event. In-situ high temperature x-ray diffraction is one technique that can identify these products. Using this technique, Kissinger et al. (4) identified the reaction products of the thermal decomposition of reagent grade FeCO3 (siderite) and MgCO3 (magnesite). However, the thermal behavior of analytical reagent grade carbonates differs from natural minerals (1). Milodowski and Morgan (5) used in-situ XRD to investigate the thermal behavior of the dolomite-ankerite series.


2015 ◽  
Vol 1743 ◽  
Author(s):  
Michal Strach ◽  
Renaud C. Belin ◽  
Jean-Christophe Richaud ◽  
Jacques Rogez

ABSTRACTIt has been shown in previous studies that a miscibility gap exists in the hypo-stoichiometric region UO2-PuO2-Pu2O3 with one phase poor in oxygen, and the other with an O/M (Oxygen to Metal ratio) close to 2.00. Data on the evolution of this region in temperature, especially in the vicinity of the oxygen content corresponding to the highest temperature at which the gap can be observed, is scarce. A high temperature X-ray diffractometer with a dedicated gas control setup was used to study the described region in-situ. We have observed reflections of the two cubic phases, with one increasing and the other decreasing in intensity during the thermal plateaus lasting up to 20 h. We compare the calculated lattice parameters with literature. We estimated the O/M evolution of our samples from a comparison of phase fractions values obtained by Rietveld refinement and calculations using the Calphad method.


Sign in / Sign up

Export Citation Format

Share Document