miscibility gap
Recently Published Documents


TOTAL DOCUMENTS

623
(FIVE YEARS 69)

H-INDEX

42
(FIVE YEARS 5)

Author(s):  
Yindong Fang ◽  
Peter K. Galenko ◽  
Dongmei Liu ◽  
Klaus Hack ◽  
Markus Rettenmayr ◽  
...  

The thermodynamic description of the fcc phase in the Al-Cu system has been revised, allowing for the prediction of metastable fcc/liquid phase equilibria to undercoolings of Δ T  = 421 K below the eutectic temperature. Hypoeutectic Al-Cu alloys that are prone to pronounced microsegregation were solidified containerlessly in electromagnetic levitation. Solidus and liquidus concentrations were experimentally determined from highly undercooled samples employing energy-dispersive X-ray analysis. Solid concentrations at a rapidly propagating solid/liquid interface were additionally calculated using a sharp interface model that considers all undercoolings and is based on solvability theory. Modelling results (front velocity versus undercooling) were also corroborated by in situ observation with a high-speed camera. A newly established thermodynamic description of the fcc phase in Al-Cu is compatible with existing CALPHAD-type databases. Inconsistencies of previous descriptions such as a miscibility gap between Al-fcc and Cu-fcc on the Al-rich side, an unrealistic curvature of the solidus line in the same composition range or an azeotropic point near the melting point of Cu, are amended in the new description. The procedure to establish the description of phase equilibria at high undercoolings can be transferred to other alloy systems and is of a general nature. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.


2021 ◽  
pp. 1-11
Author(s):  
Yoonhee Lee ◽  
Patrick Stender ◽  
Sebastian Manuel Eich ◽  
Guido Schmitz

To solve the uncertainty of the platinum (Pt)–palladium (Pd) phase diagram, especially the existence of a suggested miscibility gap, atom probe tomography (APT) was used to determine the time evolution of the composition after heat treatment. Due to the extraordinarily slow diffusion in the temperature range of the controversial phase separation, the investigated volume was limited to nano-sized multiple layers deposited by ion beam sputtering (IBS). The evaporated volume was reconstructed from the obtained datasets and the respective diffusion coefficients were determined using the Fourier series solution of the diffusion equation. Beginning with pure Pt and Pd layers annealed at 673, 773, 873, and 973 K, the mixing appears to be purely diffusion controlled in the chosen annealing times, but the state of complete mixing was still not observed. Therefore, extended isothermal annealing sequences at 673 and 773 K with pre-alloyed layers have been carried out. They clearly suggest complete mixing even at the lowest investigated temperatures.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1666
Author(s):  
Anastasia V. Frolkova

The study of topological invariants of phase diagrams allows for the development of a qualitative theory of the processes being researched. Studies of the properties of objects in the same equivalence class may be carried out with the aim of predicting the properties of unexplored objects from this class, or predicting the behavior of a whole system. This paper describes a number of topological invariants in vapor–liquid, vapor–liquid–liquid and liquid–liquid equilibrium diagrams. The properties of some invariants are studied and illustrated. It is shown that the invariant of a diagram with a miscibility gap can be used to distinguish equivalence classes of phase diagrams, and that the balance equation of the singular-point indices, based on the Euler characteristic, may be used to analyze the binodal-surface structure of a quaternary system.


Author(s):  
Yadunandan Das ◽  
Jianling Liu ◽  
Hossein Ehteshami ◽  
Joakim Odqvist ◽  
Niklas Holländer Pettersson ◽  
...  

AbstractDuplex stainless steels are a group of widely used stainless steels, because of their attractive combination of strength and corrosion resistance. However, these steels embrittle because of a phase separation phenomenon in the ferrite phase when exposed to temperatures within the miscibility gap. This manuscript investigates the phase separation in two commercial stainless steels, the duplex stainless steel (DSS) 22Cr-5Ni (2205 or UNS S32205), and the super-duplex stainless steel (SDSS) 25Cr-7Ni (2507 or UNS S32750), and its subsequent effect on mechanical property evolution. Long-term isothermal aging heat treatments were carried out at industrially relevant temperatures between 250 °C and 350 °C for up to 48,000 hours, and quantitative measurements of the amplitude and wavelength of the phase separated nanostructure were obtained using Small-Angle Neutron Scattering (SANS). These quantifications were used as input parameters in hardness models to predict the hardness evolution. It is concluded that the quantitative information from SANS combined with these hardness models enables the prediction of hardness evolution in DSS at low temperatures, which in turn correlates with the embrittlement of the DSS.


2021 ◽  
pp. 1-11
Author(s):  
Rüya Duran ◽  
Patrick Stender ◽  
Sebastian Manuel Eich ◽  
Guido Schmitz

Abstract The unclear miscibility of CuNi alloys was investigated with atom probe tomography (APT). Multilayered thin film samples were prepared by ion beam sputtering (IBS) and focused ion beam (FIB) shaping. Long-term isothermal annealing treatments in a UHV furnace were conducted at temperatures of 573, 623, and 673 K to investigate the mixing process. The effective interdiffusion coefficient of the nanocrystalline microstructure (including defect diffusion) was determined to be Deff = 1.86 × 10−10 m2/s × exp(−164 kJ/mol/RT) by fitting periodic composition profiles through a Fourier series. In nonequilibrium states, microstructural defects like grain boundaries and precipitates were observed. While at the two higher temperatures total mixing is observed, a clear experimental evidence is found for a miscibility gap at 573 K with the boundary concentrations of 26 and 66 at%. These two compositions are used in a subregular solution model to reconstruct the phase miscibility gap. So, the critical temperature TC of the miscibility gap is found to be 608 K at a concentration of 45 at% Ni.


2021 ◽  
pp. 117337
Author(s):  
Rui Cheng ◽  
Dongyang Wang ◽  
Hui Bai ◽  
Jinsong Wu ◽  
Wei Liu ◽  
...  

2021 ◽  
Vol 17 ◽  
pp. 2123-2163
Author(s):  
Patricia Flemming ◽  
Alexander S Münch ◽  
Andreas Fery ◽  
Petra Uhlmann

In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure–property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1244
Author(s):  
Tamsin E. Whitfield ◽  
George J. Wise ◽  
Ed J. Pickering ◽  
Howard J. Stone ◽  
Nicholas G. Jones

Refractory metal high entropy superalloys (RSAs) have been heralded as potential new high temperature structural materials. They have nanoscale cuboidal bcc+B2 microstructures that are thought to form on quenching through a spinodal decomposition process driven by the Ta-Zr or Nb-Zr miscibility gaps, followed by ordering of one of the bcc phases. However, it is difficult to isolate the role of different elemental interactions within compositionally complex RSAs. Therefore, in this work the microstructures produced by the Nb-Zr miscibility gap within the compositionally simpler Ti-Nb-Zr constituent system were investigated. A systematic series of alloys with compositions of Ti5NbxZr95−x (x = 25–85 at.%) was studied following quenching from solution heat treatment and long duration thermal exposures at 1000, 900 and 700 °C for 1000 h. During exposures at 900 °C and above the alloys resided in a single bcc phase field. At 700 °C, alloys with 40–75 at.% Nb resided within a three phase bcc + bcc + hcp phase field and a large misfit, 4.7–5%, was present between the two bcc phases. Evidence of nanoscale cuboidal microstructures was not observed, even in slow cooled samples. Whilst it was not possible to conclusively determine whether a spinodal decomposition occurs within this ternary system, these insights suggest that Nb-Zr interactions may not play a significant role in the formation of the nanoscale cuboidal RSA microstructures during cooling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riko Iizuka-Oku ◽  
Hirotada Gotou ◽  
Chikara Shito ◽  
Ko Fukuyama ◽  
Yuichiro Mori ◽  
...  

AbstractHydrogen (H) is considered to be one of the candidates for light elements in the Earth’s core, but the amount and timing of delivery have been unknown. We investigated the effects of sulfur (S), another candidate element in the core, on deuteration of iron (Fe) in iron–silicate–water system up to 6–12 GPa, ~ 1200 K using in situ neutron diffraction measurements. The sample initially contained saturated water (D2O) as Mg(OD)2 in the ideal composition (Fe–MgSiO3–D2O) of the primitive Earth. In the existence of water and sulfur, phase transitions of Fe, dehydration of Mg(OD)2, and formation of iron sulfide (FeS) and silicates occurred with increasing temperature. The deuterium (D) solubility (x) in iron deuterides (FeDx) increased with temperature and pressure, resulting in a maximum of x = 0.33(4) for the hydrous sample without S at 11.2 GPa and 1067 K. FeS was hardly deuterated until Fe deuteration had completed. The lower D concentrations in the S-containing system do not exceed the miscibility gap (x <  ~ 0.4). Both H and S can be incorporated into solid Fe and other light elements could have dissolved into molten iron hydride and/or FeS during the later process of Earth’s evolution.


Nano Letters ◽  
2021 ◽  
Author(s):  
Jinxing Yang ◽  
Changji Li ◽  
Tianjia Guang ◽  
Hui Zhang ◽  
Zhaojin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document