In-Situ High Temperature XRD on U0.54Pu0.46O2-x A Study of the Miscibility Gap

2015 ◽  
Vol 1743 ◽  
Author(s):  
Michal Strach ◽  
Renaud C. Belin ◽  
Jean-Christophe Richaud ◽  
Jacques Rogez

ABSTRACTIt has been shown in previous studies that a miscibility gap exists in the hypo-stoichiometric region UO2-PuO2-Pu2O3 with one phase poor in oxygen, and the other with an O/M (Oxygen to Metal ratio) close to 2.00. Data on the evolution of this region in temperature, especially in the vicinity of the oxygen content corresponding to the highest temperature at which the gap can be observed, is scarce. A high temperature X-ray diffractometer with a dedicated gas control setup was used to study the described region in-situ. We have observed reflections of the two cubic phases, with one increasing and the other decreasing in intensity during the thermal plateaus lasting up to 20 h. We compare the calculated lattice parameters with literature. We estimated the O/M evolution of our samples from a comparison of phase fractions values obtained by Rietveld refinement and calculations using the Calphad method.

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3377
Author(s):  
Zirui Huang ◽  
Meiling Zhong ◽  
Haibo Yang ◽  
Enqin Xu ◽  
Dehui Ji ◽  
...  

The isothermal crystallization of poly(l-lactide) (PLLA) has been investigated by in-situ wide angle X-ray diffraction (WAXD) and polarized optical microscopes (POM) equipped with a hot-stage accessory. Results showed that the spherulites of PLLA were formed at high temperature, whereas irregular morphology was observed under a low temperature. This can be attributed to the varying rates of crystallization of PLLA at different temperatures. At low temperatures, the nucleation rate is fast and hence the chains diffuse very slow, resulting in the formation of imperfect crystals. On the other hand, at high temperatures, the nucleation rate is slow and the chains diffuse fast, leading to the formation of perfect crystals. The change in the value of the Avrami exponent with temperature further verifies the varying trend in the morphological feature of the crystals.


1983 ◽  
Vol 27 ◽  
pp. 285-291
Author(s):  
J. Pielaszek ◽  
J.B. Cohen

X-Ray diffraction studies of substances under controlled atmospheres and at different temperatures are of great importance in many research areas. This is especially true in the area of catalysis, where the correlation of structural and catalytic properties is needed. The camera described here was made for this purpose although any sample in the powdered form can be studied as well. Many catalysts are in the form of highly dispersed metal deposited on a granulated support. The content of metal may vary from a few tenths to several percent. In a camera used by Janko and Borodzinski a small amount of catalyst was spread out on a porous silica glass sample holder which then was placed in a high temperature XRD camera with flowing gas of controlled composition.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


2006 ◽  
Vol 70 (6) ◽  
pp. 467-472 ◽  
Author(s):  
Tomonori Nambu ◽  
Nobue Shimizu ◽  
Hisakazu Ezaki ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
...  

2016 ◽  
Vol 840 ◽  
pp. 375-380
Author(s):  
Meor Yusoff Meor Sulaiman ◽  
Khaironie Mohamed Takip ◽  
Ahmad Khairulikram Zahari

The high temperature phase transition of zirconia produced from commercial zirconyl chloride chemical was compared with that produced from a Malaysian zircon mineral. Zirconyl chloride was produced from zircon by using the hydrothermal fusion method. Initial XRD diffractogram of these samples at room temperature show that they are of amorphous structure. High temperature XRD studies was then performed on these samples; heated up to 1500°C. The XRD diffractograms shows that the crystalline structure of tetragonal zirconia was first observed and the monoclinic zirconia becomes more visible at higher heating temperature.


2008 ◽  
Vol 452 (2) ◽  
pp. 446-450 ◽  
Author(s):  
Qiuguo Xiao ◽  
Ling Huang ◽  
Hui Ma ◽  
Xinhua Zhao

2015 ◽  
Vol 245 ◽  
pp. 200-203 ◽  
Author(s):  
Maxim Alexandrovich Pugachevskii ◽  
Viktor Igorevich Panfilov

The conditions of formation of the ZrO2 and HfO2 high-temperature (tetragonal and cubic) phases in the ablated nanoparticles were investigated. X-ray diffraction and transmission electron microscopy data demonstrate that laser intensities above 109 W/m2 ensure the formation of the ZrO2 high-temperature phases, while intensities above 5·109 W/m2 do the formation of the HfO2 high-temperature phases. Quantitative content of the high-temperature phases in layers of the ablated nanoparticles increases with raising the intensity. The obtained nanoparticles exhibit good thermal stability.


Sign in / Sign up

Export Citation Format

Share Document