scholarly journals Ex Vivo Expansion and In Vivo Self-Renewal of Human Muscle Stem Cells

2015 ◽  
Vol 5 (4) ◽  
pp. 621-632 ◽  
Author(s):  
Gregory W. Charville ◽  
Tom H. Cheung ◽  
Bryan Yoo ◽  
Pauline J. Santos ◽  
Gordon K. Lee ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 650-650
Author(s):  
Iman Fares ◽  
Jalila Chagaroui ◽  
Yves Gareau ◽  
Stéphane Gingras ◽  
Nadine Mayotte ◽  
...  

Abstract The widespread use of cord blood (CB) unit in transplantation is limited with low number of long-term hematopoietic stem cells (LT-HSCs) and progenitors. Several approaches have been developed to expand HSC ex vivo such as automated and continuous medium delivery (fed-batch), notch delta ligand and SR1 (antagonist of aryl hydrocarbon receptor (AhR)). Concurrent with these studies, we hypothesized that small molecule with potent LT-HSC stimulating activity might be identified and potentiated in fed-batch culture system. Accordingly, we tested a library of more than 5000 small molecules for their in vitro expansion of CD34+CD45RA- cells. Most of the identified hits, except one (UM729) synthesized in our institute, suppress AhR pathway. Structure activity relationship was performed on UM729 to generate a more potent analog named UM171. This optimized molecule was 10-20 times more potent with an effective concentration of 15-20 nM when tested for its ability to expand CD34+CD45RA- cells. When compared to SR1, UM171 delivered in a fed-batch system for 12 and 16 days showed a better expansion of HSC phenotypes and lower apoptotic cell number compared to SR1 or DMSO controls. Also, UM171-expaned cultures showed higher number in multipotent progenitors (CFU-GEMM) and long term initiating cells (LTC-IC) compared to DMSO controls. Further studies showed the UM171 did not affect division rate, and its effect in expanding HSC phenotype was reversible. When combined with SR1, UM171 showed a better suppression of differentiation and led to a higher CFU-GEMM expansion compared to the single treatment of the compounds or DMOS controls. These observations suggest that UM171+SR1 cooperate to enhance ex vivo expansion of progenitor cells and suppress differentiation. To determine the in vivo activity of the expanded CD34+ CB cells, we transplanted fresh (un-manipulated) and 12-day cultured cells in NSG mice and monitored the human hematopoietic reconstitution after 20 and 30 weeks post-transplantation. Frequencies of day0 equivalent LT-HSCs were 13-fold higher in UM171 expanded cultures compared to fresh or fed-batch cultures supplemented with DMSO or SR1. Secondary experiments indicated that UM171 ex vivo treatment did not appear to affect the capability of LT-HSC to expand in primary recipients and hence similarly reconstituted secondary animals for at least 18 more weeks. This suggests that UM171 expands LT-HSC ex vivo without losing their engraftment potential. To further investigate UM171 mechanism of action, RNA- Seq expression profiling was performed. Unlike SR1 or DMSO controls, UM171 treatment was accompanied by a marked suppression of transcripts associated with erythroid and megakaryocytic differentiation and up-regulation of membrane protein transcripts such as EPCR and TEMEM 183a. In summery, UM171 is the first molecule identified so far that enables a robust ex vivo expansion of human CD34+ CB cells that sustain their in vivo activity independent of AhR suppression. Conversely, AhR suppression was limited to expand cells with less durable self-renewal potential. This study could enhance the use of small yet well HLA-matched CB units to become a prioritized source for stem cells transplantation. Disclosures No relevant conflicts of interest to declare.


Stem Cells ◽  
2005 ◽  
Vol 23 (8) ◽  
pp. 1135-1141 ◽  
Author(s):  
Ouassila Habi ◽  
Marie-Chantal Delisle ◽  
Nancy Messier ◽  
Madeleine Carreau

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4147-4147
Author(s):  
Sonja Loges ◽  
Martin Butzal ◽  
Uta Fischer ◽  
Ursula M. Gehling ◽  
Dieter K. Hossfeld ◽  
...  

Abstract The rare CD133+ stem cell population contains both hematopoietic and endothelial progenitors. Successful ex-vivo expansion of this multipotent population would therefore be of great benefit in many clinical settings including stem cell transplantation and gene therapy. We developed a cell culture system containing the recombinant human cytokines vascular endothelial growth factor (VEGF), FLT3 ligand (FLT3L) and stem cell growth factor (SCGF) for ex-vivo expansion of purified human CD133+ stem cells obtained from leukapheresis products from patients pre-treated with G-CSF. FACS analysis, colony assays and NOD-SCID transplantation studies were performed to monitor stem cell and endothelial phenotype in-vitro and in-vivo. Cultivation with VEGF, FLT3L and SCGF induced a mean 2200-fold increase of total cell counts in 5 weeks. FACS analysis revealed persistence of 6–15% CD133+ stem cells indicating proliferation and survival of primitive hematopoietic stem cells. 5–6% of the proliferating cells expressed the endothelial markers CD144 (VE-Cadherin) and von-Willebrand factor (vWF). Ex-vivo expanded stem cells could be differentiated into adherent endothelial cells after withdrawal of SCGF and FLT3L allowing generation of large numbers of endothelial cells. Colony-assays showed an increase of hematopoietic and endothelial colonies after 5 weeks of ex-vivo expansion indicating simultaneous proliferation of hematopoietic and endothelial precursors under the established culture conditions (CFU-E 60-fold, CFU-GEMM 48-fold, CFU-GM 59-fold, CFU-G 99-fold, CFU-M 1356-fold and CFU-EC 1843-fold). To assess in-vivo functionality, hematopoietic stem cells expanded ex-vivo for 7, 14, 21 and 32 days were transplanted into sublethally irradiated NOD-SCID mice. For each expansion period, the mean percentage of anti-human CD45 positive bone marrow cells 3 months post-transplantation was 11, 3, 3 and 1%, respectively. Human CD45+ cells for each set of experiments contained a mean of 15, 26, 8 and 32% T-cells (CD3+), 9, 0, 7 and 21% B-cells (CD19+), 24, 2, 2 and 11% monocytes (CD14+), 21, 3, 1 and 12% granulocytes (CD33+) and 19, 37, 44 and 24% stem cells (CD34+) (d7 (n=5), d14 (n=4), d21 (n=7) and d32 (n=6) respectively). Our experiments showed multilineage engraftment of human stem cells expanded for more than 4 weeks ex-vivo. Therefore our culture system provides a tool to generate large numbers of human stem and endothelial cells for clinical purposes.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1920-1920
Author(s):  
Santosh Saraf ◽  
Hiroto Araki ◽  
Benjamin Petro ◽  
Kazumi G Yoshinaga ◽  
Simona Taioli ◽  
...  

Abstract Abstract 1920 Currently, a significant percentage of hematopoietic stem cell (HSC) transplantations are being performed using growth factor mobilized peripheral blood (MPB) grafts. Unfortunately, about 5 to 40% of patients are unable to benefit from HSC transplantation due to failure to mobilize and harvest an adequate graft (> 2 × 106 CD34+ cells/kg). Epigenetic modifications are thought to be important in determining the fate of HSC including self renewal and differentiation. We have previously demonstrated that sequential addition of chromatin modifying agents (CMA), 5-aza-2'-deoxyctidine (5azaD) and trichostatin A (TSA), is capable of expanding transplantable HSC 7-fold from human cord blood (CB), likely by preventing the silencing of genes which promote HSC self renewal divisions (Araki et al. Blood 2007). Using the same protocol we have also previously shown that 5azaD/TSA can expand CD34+CD90+ cells containing in vivo repopulating capacity from human bone marrow (BM) 2.5-fold (Milhem et al. Blood 2004). The objectives of our current studies were to assess whether CMA can also expand HSCs present in MPB. In order to test this hypothesis, CD34+ cells were isolated from MPB products from three healthy donors and were expanded ex vivo using 5azaD/TSA for 9 days as described previously (Araki et al. Blood 2007). Following culture, expansion of primitive CD34+CD90+ cells, colony forming unit mixed lineages (CFU-mix), and long term (5 weeks) cobblestone area forming cells (CAFC) were assessed. A 3.74 ± 0.77 fold expansion of CD34+CD90+ cells was observed in 5azaD/TSA expanded MPB cells while only a 0.93 ± 0.23 fold expansion was observed in control cultures (p = 0.025). The 5azaD/TSA expanded MPB cells had a 10.1-fold increase in the number of CFU-mix in comparison to no expansion in the control cultures (p = 0.0055). A 2.26-fold expansion of CAFC numbers was observed in 5azaD/TSA expanded MPB cells in comparison to 0.19-fold expansion in control cultures. Taken together, our data indicate that 5azaD/TSA can expand MPB CD34+CD90+ cells 3.74-fold which also possess the functional capacity to generate primitive CFU-mix and long term CAFCs. This expansion of primitive MPB CD34+CD90+ cells appears to be at an intermediate level (3.74 fold) in comparison to BM and CB which had 2.5-fold and 10.5-fold expansion, respectively. We have previously demonstrated that CD34+CD90+ expanded CB cells are exclusively responsible for reconstituting blood cells following transplantation (Araki et al. Exp Hematol 2006). Currently, the frequency of in vivo repopulating units for CMA expanded MPB is being determined in contrast to expanded BM and CB cells. However, it remains to be investigated what determines the limit for ex vivo expansion of HSC by epigenetic modifiers based on their ontogeny. Towards this goal we analyzed transcription levels of several genes implicated for HSC self renewal/expansion including HoxB4, GATA 2, and Ezh2, which were compared between MPB cells prior to and following expansion in 5azaD/TSA or control cultures. Significantly higher transcript levels were detected for HoxB4 (p = 0.003), GATA 2 (p = 0.0002), and Ezh2 (p = 0.0001) by real time quantitative RT PCR in the 5azaD/TSA expanded MPB graft in comparison to control cultures. Interestingly the transcript levels of HoxB4 and GATA 2 but not Ezh2 were significantly lower in expanded cells in contrast to unmanipulated primary MPB cells. This is in sharp contrast to our earlier results from CB in which 5azaD/TSA expanded cells displayed much higher transcript levels of HoxB4 and GATA 2 compared to primary unmanipulated CB cells. Previously we have demonstrated that environmental conditions can influence the degree of expansion of transplantable HSC from CB (Araki et al. Exp Hematol 2009). Using the same protocol we expanded MPB cells in the presence or absence of CMA using either optimal (SCF, TPO, FLT3L) or suboptimal cytokine cocktails (SCF, TPO, FLT3L with IL-3 and IL-6). Interestingly, unlike CB cells no significant difference in expansion between the two cytokine groups with or without CMA was observed (4.5 versus 4.3-fold expansion of CD34+CD90+ cells, respectively). Corresponding to this, transcript levels of HoxB4 and Ezh2 did not vary between MPB cells expanded with 5azaD/TSA in the two different cytokine environments. Our studies have the potential to be used to expand HSC from poor mobilizers in order to optimize MPB grafts for transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 779-779
Author(s):  
Maegan L. Capitano ◽  
Nirit Mor-Vaknin ◽  
Maureen Legendre ◽  
Scott Cooper ◽  
David Markovitz ◽  
...  

Abstract DEK is a nuclear DNA-binding protein that has been implicated in the regulation of transcription, chromatin remodeling, and mRNA processing. Endogenous DEK regulates hematopoiesis, as BM from DEK-/- mice manifest increased hematopoietic progenitor cell (HPC) numbers and cycling status and decreased long-term and secondary hematopoietic stem cell (HSC) engrafting capability (Broxmeyer et al., 2012, Stem Cells Dev., 21: 1449; 2013, Stem Cells, 31: 1447). Moreover, recombinant mouse (rm) DEK inhibits HPC colony formation in vitro. We now show that rmDEK is myelosuppressive in vitro in an S-phase specific manner and reversibly decreases numbers (~2 fold) and cycling status of CFU-GM, BFU-E, and CFU-GEMM in vivo, with DEK-/- mice being more sensitive than control mice to this suppression. In contrast, in vivo administration of rmDEK to wild type and DEK-/- mice enhanced numbers of phenotypic LT-HSC. This suggests that DEK may enhance HSC numbers by blocking production of HPCs. We thus assessed effects of DEK on ex vivo expansion of human CD34+ cord blood (CB) and mouse Lin- BM cells stimulated with SCF, Flt3 ligand, and TPO. DEK significantly enhanced ex vivo expansion of rigorously-defined HSC by ~3 fold both on day 4 (~15 fold increase from day 0) and 7 (~29 fold increase from day 0) when compared to cells expanded without DEK. Expanding HSC with DEK also resulted in a decrease in the percentage of apoptotic HSC. Further studies were done to better define how DEK works on HSC and HPC. As extracellular DEK can bind to heparan sulfate proteoglycans (HSPG), become internalized, and then remodel chromatin in non-hematopoietic cells in vitro (Kappes et al., 2011, Genes Dev., 673; Saha et al., 2013, PNAS, 110: 6847), we assessed effects of DEK on the heterochromatin marker H3K9He3 in the nucleus of purified mouse lineage negative, Sca-1 positive, c-Kit positive (LSK) BM cells by imaging flow cytometry. DEK enhanced the presence of H3K9Me3 in the nucleus of DEK-/- LSK cells, indicating that rmDEK can be internalized by LSK cells and mediate heterochromatin formation. We also investigated whether inhibiting DEK's ability to bind to HSPG would block the inhibitory function of DEK in HPC. Blocking the synthesis of, the surface expression of, and the binding capability of HSPG blocked the inhibitory effect of DEK on colony formation. Blocking the ability of DEK to bind to HSPG also blocks the expansion of HSC in ex vivo expansion assays, suggesting that DEK mediates its function in both HSC and HPC by binding to HSPG but with opposing effects. To further evaluate the biological role of rmDEK, we utilized single-stranded anti-DEK aptamers that inactivate its function. These aptamers, but not their control, neutralized the inhibitory effect of rmDEK on HPC colony formation. Moreover, treating BM cells in vitro with truncated rmDEK created by incubating DEK with the enzyme DPP4 (DEK has targeted truncation sites for DPP4) eliminated the inhibitory effects of DEK, suggesting that DEK must be in its full- length form in order to perform its function. Upon finding that DEK has a Glu-Leu-Arg (ELR) motif, similar to that of CXC chemokines such as IL-8, and as DEK is a chemoattractant for mature white blood cells, we hypothesized that DEK may manifest at least some of its actions through CXCR2, the receptor known to bind and mediate the actions of IL-8 and MIP-2. In order to examine if this is indeed the case, we first confirmed expression of CXCR2 on the surface of HSC and HPC and then determined if neutralizing CXCR2 could block DEK's inhibitory function in HPC. BM treated in vitro with rmDEK, rhIL-8, or rmMIP-2 inhibited colony formation; pretreating BM with neutralizing CXCR2 antibodies blocked the inhibitory effect of these proteins. DEK inhibition of CFU-GM colony formation is dependent on Gai-protein-coupled receptor signaling as determined through the use of pertussis toxin, which is a mechanism unique to DEK, as we have previously reported that IL-8 and MIP-1a are insensitive to the inhibitory effects of pertussis toxin. Blocking the ability of DEK to bind to CXCR2 also inhibited the expansion of HSC in an ex vivo expansion assay. This suggests that DEK binds to CXCR2, HSPG or both to mediate its function on HPC and HSC, enhancing HSC but decreasing HPC numbers. Therefore, DEK may be a crucial regulatory determinant of HSC/HPC function and fate decision that is utilized to enhance ex vivo expansion of HSC. Disclosures No relevant conflicts of interest to declare.


2022 ◽  
Vol 17 (1) ◽  
pp. 82-95
Author(s):  
Marina Arjona ◽  
Armon Goshayeshi ◽  
Cristina Rodriguez-Mateo ◽  
Jamie O. Brett ◽  
Pieter Both ◽  
...  

2018 ◽  
Author(s):  
Brendan Evano ◽  
Gilles Le Carrou ◽  
Geneviève Almouzni ◽  
Shahragim Tajbakhsh

AbstractStem cells are maintained through symmetric or asymmetric cell divisions. While various mechanisms initiate asymmetric cell fates during mitosis, possible epigenetic control of this process has emerged recently. The asymmetrical distribution of a canonical histone H3 variant during mitosis in fly germline has suggested a role for partitioning old and new nucleosomes in asymmetric cell fates. Here, we provide resources for single cell assays and show the asymmetric segregation of transcription factors along with old and new DNA in mouse muscle stem cells ex vivo and in vivo. However, these differential fate outcomes contrast with a symmetric distribution of the canonical H3.1 vertebrate variant. These findings point to different evolutionary mechanisms operating in fly germline stem cells and vertebrate somatic stem cells to mitigate epigenetic regulation of asymmetric cell fates.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1566-1566 ◽  
Author(s):  
Hiro Tatetsu ◽  
Fei Wang ◽  
Chong Gao ◽  
Shikiko Ueno ◽  
Xi Tian ◽  
...  

Abstract Hematopoietic stem cells (HSCs) possess the unique capacity to self-renew and give rise to all types of mature cells within the blood and immune systems. Despite our progress in understanding the molecular factors that support the self-renewal and differentiation of the hematopoietic system in vivo, less is known on how to modulate the factors that govern the self-renewal of hematopoietic stem/progenitor cells (HSPCs) ex vivo. Unlike in the case of embryonic stem (ES) cells, expansion of CD34+ HSPC in culture in general is at the expense of loss of “stemness”. HSPCs can be collected from cord blood (CB), mobilized peripheral blood (PBSC), and rarely bone marrow (BM) at the present practice. Due to the limited CD34+ cell number in one single cord blood unit, much of the current efforts on developing technology of ex vivo expansion of HSPC uses cord blood as a source and is clinically applied to cord blood HSPC transplants. However, there are growing needs for expanding PBSCs for transplant-related practices such as HSPC expansion from poor autologous mobilizations, gene therapy or genome-editing via TALENs or CRISPR/Cas9. Developing a technology that would allow HSPC ex vivo expansion from both CB and PBSC sources is a key step towards this goal. Several groups have reported that ex vivo culture of CB CD34+ cells with HDAC inhibitors (HDACi) can lead to expansion of a CD34+CD90+ population, which is responsible for enhanced marrow-repopulating potential. In this study, we ask whether HDACi can have a similar effect on PBSC CD34+ cells. Furthermore, we have explored the mechanism(s) mediated by HDACi in CD34+CD90+ cell expansion. First we assessed a panel of HDACi to identify the most potent molecule for CD34+CD90+ cell expansion and selected trichostatin A (TSA) for future study. Next, TSA was added to the cytokines (SCF, Flt3 ligand, IL-3 and IL-6) to further characterize its potential in PBSC CD34+CD90+ cell expansion. We observed TSA treated CD34+ cultures with cytokines yielded 4.8 times greater numbers of CD34+CD90+ cells as compared to the cultures containing cytokines with DMSO solvent control. We next examined SCID repopulating ability (SRA) to evaluate the cultured CD34+CD90+ cells in vivo. We observed that mice transplanted with 3 million CD34+ cells treated with TSA had higher degree of human cell chimerism than those treated with DMSO at 8 weeks bone marrow and peripheral blood (32% vs 18%; p < 0.05), which was further confirmed by secondary transplantation. Furthermore, these cells were capable of differentiating into cells belonging to multiple hematopoietic lineages. To investigate the molecular mechanisms responsible for the expansion of functional HSCs and progenitors that were observed following TSA treatment, we analyzed the expression levels of several HSPC related genes, which were compared between CD34+ cells treated with TSA and DMSO. Significantly higher transcript levels were detected for GATA 2 (p < 0.05), HOXB4 (p < 0.05), HOXA9 (p < 0.05), and SALL4 (p < 0.05) by real time quantitative RT-PCR in TSA expanded cells as compared with controls. To evaluate whether these transcription factors can contribute to the expansion of CD34+CD90+ cells, GATA2, HOXB4 or SALL4 shRNAs were transfected into PBSC CD34+ cells, followed by culture with TSA. Among these transcription factors, knocking down SALL4 expression led to the most significant reduction of CD34+CD90+ cell numbers (33% of reduction). In addition, overexpression of SALL4 in PBSC CD34+ cells led to an increase of CD34+CD90+ cell numbers when compared to controls (p < 0.05). Overall, our study demonstrated a novel HDACi mediated ex vivo PBSC culture technology that leads to the expansion of CD34+CD90+ cells and an increase of the marrow repopulating potential of these cells. Both gain-of-function and loss-of-function studies support that SALL4 is a key transcription factor responsible for the process. Future study on the use of HDACi or other methods to increase SALL4 expression/function will be highly beneficial to ex vivo HSPC (CB and PBSC) expansion technology. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document