scholarly journals NOTCH-mediated ex vivo expansion of human hematopoietic stem and progenitor cells by culture under hypoxia

2021 ◽  
Vol 16 (9) ◽  
pp. 2336-2350
Author(s):  
Daisuke Araki ◽  
Jian Fei Fu ◽  
Heather Huntsman ◽  
Stefan Cordes ◽  
Fayaz Seifuddin ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1174-1174
Author(s):  
Taito Nishino ◽  
Atsushi Iwama

Abstract Abstract 1174 Ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) have recently been explored to optimize autologous and allogeneic HSPC transplantation and shown to be effective in the field of stem cell biology. However, to our knowledge, identification of culture conditions that allow HSPCs expansion and long-term hematopoietic reconstitution have remained incomplete, and clinical methods to expand human HSPCs have yet to be realized. In this study, we assumed that some small molecule compounds may preferentially activate signals that are required for optimal HSPC expansion and facilitate self-renewal of hematopoietic stem cells (HSCs). Thus, we evaluated the effects of several biologically active compounds on the ex vivo expansion of CD34+ hematopoietic stem and progenitor cells from human cord blood (hCB) and identified Garcinol, a plant-derived natural product as a novel modulator of HSPC proliferation. We cultured hCB CD34+ cells in serum-free medium supplemented with human thrombopoietin, human stem cell factor and Garcinol for 7 days and analyzed the cellular phenotype of the cultured cells by flow cytometry and colony assay. Although the total number of cells cultured with Garcinol was similar to those cultured without Garcinol, the cultures with Garcinol showed >2-fold increase in the number of CD34+CD38- hematopoietic stem and progenitor cells and contained 2-fold more high-proliferative-potential colony-forming cells (HPP-CFCs; >1mm in diameter) compared to control cultures. Correspondingly, SCID-repopulating cells (SRCs) were increased 2-fold during a 7-day culture with Garcinol compared to cultures without Garcinol. These findings suggest that Garcinol efficiently promotes the net expansion of HPSCs. To investigate the structure-activity relationship of Garcinol, we synthesized the chemical derivatives of Garcinol and evaluated the effect of Garcinol and its derivatives, Isogarcinol and O, O'-dimethylisogarcinol, on the proliferation of CD34+CD38- cells. Although Isogarcinol exhibited almost the same activity as Garcinol, O, O'-dimethyl isogarcinol was scarcely effective in the CD34+CD38- cell proliferation. Correspondingly, O, O'-dimethylisogarcinol had no effect on numbers of HPP-CFCs. These results indicate that dihydroxybenzoyl moiety is crucial for the positive effect of Gacinol on HSPCs.Garcinol has been reported to be a potent inhibitor of histone acetyltransferases (HAT). Thus, we estimated the HAT activity in cells treated with Garcinol and its derivatives. Garcinol and Isogarcinol inhibited HAT activity while O, O'-dimethylisogarcinol showed much less HAT inhibitory activity as compared to Garcinol and Isogarcinol, which suggested that HAT inhibitory activity of Garcinol is correlate with the expansion of HPSCs. We are now investigating gene expression profiling in cells cultured with Garcinol using DNA microarray analysis and Q-PCR. In conclusion, we have identified Garcinol, a plant-derived small-molecule compound, which exhibits inhibitory effect on HAT activity, as a novel stimulator of HSPC expansion. The results reported here indicate that Garcinol would be applied as a useful tool for the development of novel and efficient technologies for hematopoietic stem cell and gene therapies. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Luena Papa ◽  
Mansour Djedaini ◽  
Manisha Kintali ◽  
Christoph Schaniel ◽  
Ronald Hoffman

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hui Xie ◽  
Li Sun ◽  
Liming Zhang ◽  
Teng Liu ◽  
Li Chen ◽  
...  

Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.


Sign in / Sign up

Export Citation Format

Share Document