Production of supported gold and gold–silver nanoparticles by supercritical fluid reactive deposition: Effect of substrate properties

2015 ◽  
Vol 96 ◽  
pp. 287-297 ◽  
Author(s):  
Sabrina Müller ◽  
Michael Türk
2006 ◽  
Vol 252 (22) ◽  
pp. 7862-7873 ◽  
Author(s):  
Stefan Hannemann ◽  
Jan-Dierk Grunwaldt ◽  
Frank Krumeich ◽  
Peter Kappen ◽  
Alfons Baiker

2018 ◽  
Vol 42 (17) ◽  
pp. 14128-14137 ◽  
Author(s):  
Priyanka Ray ◽  
Marie Clément ◽  
Cyril Martini ◽  
Ibrahim Abdellah ◽  
Patricia Beaunier ◽  
...  

We report a facile approach to synthesise small Au–Ag alloyed nanoparticles using a new cali[8]arene derivative as a stabiliser.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 766 ◽  
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Kamil Kuča ◽  
Anu Kalia ◽  
Eugenie Nepovimova ◽  
...  

Green synthesis has gained wide attention as a sustainable, reliable, and eco-friendly approach to the synthesis of a variety of nanomaterials, including hybrid materials, metal/metal oxide nanoparticles, and bioinspired materials. Plant flowers contain diverse secondary compounds, including pigments, volatile substances contributing to fragrance, and other phenolics that have a profound ethnobotanical relevance, particularly in relation to the curing of diseases by ‘Pushpa Ayurveda’ or floral therapy. These compounds can be utilized as potent reducing agents for the synthesis of a variety of metal/metal oxide nanoparticles (NPs), such as gold, silver, copper, zinc, iron, and cadmium. Phytochemicals from flowers can act both as reducing and stabilizing agents, besides having a role as precursor molecules for the formation of NPs. Furthermore, the synthesis is mostly performed at ambient room temperatures and is eco-friendly, as no toxic derivatives are formed. The NPs obtained exhibit unique and diverse properties, which can be harnessed for a variety of applications in different fields. This review reports the use of a variety of flower extracts for the green synthesis of several types of metallic nanoparticles and their applications. This review shows that flower extract was mainly used to design gold and silver nanoparticles, while other metals and metal oxides were less explored in relation to this synthesis. Flower-derived silver nanoparticles show good antibacterial, antioxidant, and insecticidal activities and can be used in different applications.


ChemistryOpen ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1369-1374
Author(s):  
J. Michael Köhler ◽  
Jonas Kluitmann ◽  
Andrea Knauer

2015 ◽  
Vol 119 (10) ◽  
pp. 5604-5613 ◽  
Author(s):  
Ranguwar Rajendra ◽  
Parnika Bhatia ◽  
Anita Justin ◽  
Shilpy Sharma ◽  
Nirmalya Ballav

Sign in / Sign up

Export Citation Format

Share Document