Effect of long term, high temperature aging on luminescence from Eu-doped YSZ thermal barrier coatings

2006 ◽  
Vol 201 (7) ◽  
pp. 3942-3946 ◽  
Author(s):  
M.D. Chambers ◽  
David R. Clarke
Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Pei-Hu Gao ◽  
Sheng-Cong Zeng ◽  
Can Jin ◽  
Bo Zhang ◽  
Bai-Yang Chen ◽  
...  

Thermal barrier coatings with multi-sized porous structure at micro and nano scales were prepared with hollow spherical YSZ powders and polypropylene powders through atmospheric plasma spraying. The thermal conductivities of the multi-sized thermal barrier coatings after a long-term serving at high temperature were tested through laser flash heating method. Meanwhile, the physical models of thermal barrier coatings with multi-sized porous structure at micro and nano scales were constructed through Ansys Workbench. The evolutions of thermal conductivity of thermal barrier coatings with multi-sized pores after long-term service at 1100 °C were investigated through computation. It was found that the thermal conductivity of the coating increased with the extension of the serving time. When the serving time reached 60 days, the thermal conductivity of the coating tended to be stable and close to the compacted bulk. The computational results were consistent with the tested ones, which could be helpful to explain the thermal conducting evolution in thermal barrier coatings with multi-sized porous structure at nano and micro scales after long-term serving at high temperature.


Author(s):  
Uwe Rettig ◽  
Ulrich Bast ◽  
Dinorah Steiner ◽  
Matthias Oechsner

The use of high performance ceramic thermal barrier coatings in stationary gas turbines requires fundamental knowledge of their fatigue behavior under high temperature gradients and thermal cycling. An experimental method based on rapid laser heating complemented with finite-element calculations was developed in order to identify the major damage mechanisms and to obtain a data set for reliability assessment of thermal barrier coatings for temperature and stress fields similar to gas turbine conditions. The observed failures are strongly related to the pretreatment procedures such as annealing under high temperature gradients and isothermal long-term oxidation. The vertical crack patterns observed close to the top surface of the Zirconia coating are generated at the moment of rapid cooling. These cracks are induced by high biaxial tensile stresses caused by the temperature gradient and the stress reversion after relaxation of compressive stresses at high temperatures. The long-term fatigue behavior is decisively determined by two processes: (i) The porous Zirconia loses its damage tolerant properties by densification. (ii) The growth of an oxide layer at the bond coat degrades adhesion and produces localized stress fields at the interface. Cyclic loads increase the length of existing in-plane cracks and delaminations rather than enlarging their number. Misfit of the crack flanks and wedge effects are the driving forces for continued crack propagation. These experimental results are discussed in terms of fracture mechanics.


1999 ◽  
Vol 121 (2) ◽  
pp. 259-264 ◽  
Author(s):  
U. Rettig ◽  
U. Bast ◽  
D. Steiner ◽  
M. Oechsner

The use of high performance ceramic thermal barrier coatings in stationary gas turbines requires fundamental knowledge of their fatigue behavior under high temperature gradients and thermal cycling. An experimental method based on rapid laser heating complemented with finite-element calculations was developed in order to identify the major damage mechanisms and to obtain a data set for reliability assessment of thermal barrier coatings for temperature and stress fields similar to gas turbine conditions. The observed failures are strongly related to the pretreatment procedures such as annealing under high temperature gradients and isothermal long-term oxidation. The vertical crack patterns observed closed to the top surface of the Zirconia coating are generated at the moment of rapid cooling. These cracks are induced by high biaxial tensile stresses caused by the temperature gradient and the stress reversion after relaxation of compressive stresses at high temperatures. The long-term fatigue behavior is decisively determined by two processes: (1) the porous Zirconia loses its damage tolerant properties by densification, and (2) the growth of an oxide layer at the bond coat degrades adhesion and produces localized stress fields at the interface. Cyclic loads increase the length of existing in-plane cracks and delaminations rather than enlarging their number. Misfit of the crack flanks and wedge effects are the driving forces for continued crack propagation. These experimental results are discussed in terms of fracture mechanics.


2014 ◽  
Vol 34 (4) ◽  
pp. 961-974 ◽  
Author(s):  
Lisa Pin ◽  
Vanessa Vidal ◽  
Fabien Blas ◽  
Florence Ansart ◽  
Sandrine Duluard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document