Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
Latest Publications


TOTAL DOCUMENTS

139
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791878668

Author(s):  
Clayton M. Grondahl ◽  
Toshiaki Tsuchiya

The introduction of a ceramic gas turbine component in commercial power generation service will require significant effort. A careful assessment of the power plant performance benefit achievable from the use of ceramic components is necessary to rationalize the priority of this development compared to other alternatives. This paper overviews a study in which the performance benefit from ceramic components was evaluated for an MS9001FA gas turbine in a combined cycle power plant configuration. The study was performed with guidelines of maintaining constant compressor inlet airflow and turbine exit NOx emissions, effectively setting the combustion reaction zone temperature. Cooling flow estimates were calculated to maintain standard design life expectancy of all components. Monolithic silicon nitride ceramic was considered for application to the transition piece, stage one and two buckets, nozzles and shrouds. Performance benefit was calculated both for ceramic properties at 1093C (2200F) and for the more optimistic 1315C (2400F) oxidatian limit of the ceramic. Hybrid ceramic-metal components were evaluated in the less optimistic case.


Author(s):  
J. J. Chen ◽  
C. H. Menq

In this paper, the concept of constrained mode shapes is employed to predict the resonant response of a frictionally constrained blade system. For a tuned blade system, the constrained mode shapes can be calculated using a finite element model of a single blade along with the cyclic symmetry constraint that simulates a fully stuck friction contact. The resulting constrained mode shapes are often complex and can be used to obtain the constrained receptance of the frictionally constrained blade. It is shown that by examining each mode’s contribution to the receptance at the friction contact point, the importance of each individual modes to the prediction of the resonant response of a frictionally constrained blade can be determined. Furthermore, by comparing the receptances calculated from free mode shapes and those from constrained mode shapes, it is found that in the neighborhood of the fully slipping region, the prediction of resonant response requires fewer number of modes when using free mode shapes compared to using constrained mode shapes. On the other hand, in the neighborhood of the fully stuck region, it requires fewer number of modes if constrained mode shapes are used. Therefore, when high preload at the friction contact is desirable, such as for shrouded blade systems, using the constrained mode shapes for the prediction of resonant response is preferred. Moreover, the concept of hybrid receptance is introduced so as to yield very accurate prediction of the resonant response based on only very few vibration modes.


Author(s):  
Joseph A. Daleo ◽  
Keith A. Ellison ◽  
David A. Woodford

Stress relaxation and constant displacement rate tensile tests were performed on poly-crystalline GTD111 alloy material removed from General Electric MS6001B first stage combustion turbine buckets. Samples were examined in the standard heat treated condition, thermally exposed at 900°C for 5000 hours and from service run buckets. Creep rates of the material were measured and evaluated directly in terms of temperature capability at 850°C and 900°C. Stress relaxation tests done at 0.8% total strain indicated that the creep rate properties in the service exposed airfoil were an order of magnitude higher than the material properties in the standard heat treated condition measured in the root form. In terms of temperature capability, the creep rate properties of the service run airfoil material had decreased by the equivalent of almost 40°C. The stress relaxation test method was demonstrated to be a very useful tool in quantifying the degradation of creep properties in service run components. Creep data that would require years to gather using conventional creep tests was generated in a few days. This now makes realistic life assessment and repair / replace decisions possible during turbine overhauls. The test method’s unique ability to measure changes in creep rate over a large stress range, enabled the technique to distinguish between changes in creep strength due to (normal) microstructural evolution from the combined effects of microstructural evolution and strain related creep damage. A method for estimating standard constant load creep rupture life from the stress relaxation creep rate data is also presented along with time-temperature parameter correlations. The data sets examined in this study indicate that creep rupture lives can be estimated within a factor of three from the stress relaxation data. The information and analysis techniques described in this paper are directly applicable to metallurgical life assessment evaluations and the re-qualification of repaired General Electric buckets in Frame 3, 5, 6, 7 and 9 engine models.


Author(s):  
K. R. Pullen ◽  
A. W. Court ◽  
C. B. Besant

The preparation of engineering students for industrial careers after graduating is a vital part of the education process at university. It is the responsibility of the university to teach sound foundations of engineering science but this on its own is not sufficient preparation. The subject of design has been identified as a valuable means by which engineering science can be applied at advanced levels but at the same time teach students skills which are necessary for successful careers in industry. Three years ago, five senior engineers from UK industry were appointed as Visiting Professors in Engineering Design with the support of the Royal Academy of Engineering. In was decided after discussions with academics at the college to undertake a project entitled the Advanced Turbogenerator project (ATG). The project was to be conducted by a large team of undergraduates with the aim of producing a design and finally an actual small gas turbine of 50 kW output. Applications for the small gas turbine include the highly topical hybrid vehicle propulsion powertrain and compact low emissions generator sets. The paper describes the progress made in the project in two years which has involved over 30 final year engineering students in the Mechanical, Electrical, Aeronautical and Materials Science Departments. The students have found the project very challenging but have experienced an unusually high level of motivation and commitment to the work. They have been provided with state of the art software and have demonstrated that realistic designs can be produced with the guidance of experienced gas turbine engineers. The project has been reviewed by the Royal Academy of Engineering and the Institution of Mechanical Engineers and both have expressed the highest support for the programme. It is intended to continue the project next year with the intention of turning the design into prototype hardware.


Author(s):  
Y. Kaneko ◽  
K. Mori ◽  
H. Ohyama ◽  
E. Watanabe

For the purpose of the efficient analysis of a mistuned bladed disk system, a new analysis method which applies the substructure synthesis method and the modal analysis method is proposed. Using the proposed method, the vibrational characteristics of the grouped blades structure are studied. From the results, it is found that the grouped blades structure is very sensitive to the mistuning. It is also found that the mixed grouped blades structure (a bladed disk system consisting of some different types of grouped blades relating to the number of blades contained) has an undesirable effect on the forced response. Moreover, by comparing the vibrational characteristics of the integral shroud blades (ISB) structure with those of the grouped blades structure, it is clarified that the reliability of the ISB structure is superior to other structures also from the viewpoint of the mistuning.


Author(s):  
R. Srivastava ◽  
Milind A. Bakhle ◽  
Theo G. Keith ◽  
G. L. Stefko

In the present work the unsteady aerodynamic characteristics of harmonically oscillating fan blades are investigated by applying a time-shifted boundary condition at the periodic boundaries. The direct-store method is used to implement the time-shifted boundary condition in a time-marching Euler/Navier-Stokes solver. Inviscid flow calculations for a flat plate helical fan, in a single-blade passage domain, are used to verify the analysis. The results obtained show good correlation with other published results as well as with the same solver using multiple blade passages stacked together. Significant savings in computer time is realized, especially for smaller phase angles.


Author(s):  
Andrew A. Wereszczak ◽  
Kristin Breder ◽  
Mark J. Andrews ◽  
Timothy P. Kirkland ◽  
Mattison K. Ferber

Machining damage (a surface flaw) and porous-region-flaw (a volume flaw) populations limited the flexure strengths of a commercially available silicon nitride at 25°C, while these same flaws, along with inclusions, limited flexure strengths at 850°C. The machining damage and porous region flaws were the primary interest in the present study because they caused failure at both temperatures. Censoring revealed that the two-parameter Weibull strength distributions representing each flaw population changed as a function of stressing rate (i.e., dynamic fatigue) and temperature. A decrease in the Weibull scaling parameter is recognized as an indication of slow crack growth or time-dependent strength reduction in monolithic ceramics. Available life prediction codes used for reliability predictions of structural ceramic components consider the slow crack growth phenomenon. However, changes in the Weibull modulus are infrequently observed or reported, and typically are not accounted for in these life prediction codes. In the present study, changes in both Weibull parameters for the strength distributions provided motivation to the authors to survey what factors (e.g., residual stress, slow crack growth, and changes in failure mechanisms) could provide partial or full explanation of the observed distribution changes in this silicon nitride. Lastly, exercises were performed to examine the effects of strength distribution changes on the failure probability prediction of a diesel exhaust valve. Because the surface area and volume of this valve were substantially larger than those of the tested bend bars, it was found that the valve’s failure probability analysis amplified some slight or inconclusive distribution changes which were not evident from the interpretation of the censored bend bar strength data.


Author(s):  
Mark D. Sensmeier ◽  
Kurt L. Nichol

Correlation between dynamic strain gage measurements and modal analysis results can be adversely affected by gage misplacement and gage misorientation. An optimization algorithm has been developed which allows the modeled strain gage locations and orientations to be varied within specified tolerances. An objective function is defined based on the least squares sum of the differences between experimental and model results. The Kuhn-Tucker conditions are then applied to find the gage locations and orientations which minimize this objective function. The procedure is applied on a one-time basis considering all measured modes of vibration simultaneously. This procedure minimizes instrumentation error which then allows the analyst to modify the model to more accurately represent other factors, including boundary conditions. Flat plate vibratory data was used to demonstrate a significant improvement in correlation between measured data and model predictions.


Author(s):  
Friedrich Schwamm

One of the main requirements for modern FADEC systems is to implement great computing power with many interfaces and to keep the FADEC hardware effort to a minimum. On the other side the criticality potential of computer failures is considered as ‘hazardous’. The trend in FADEC development is to implement even more complex functions into the control software which consequently increases the authority and therefore the criticality potential of computer failures. In the mid 80’s a double computer system was used to performed a parallel execution of the control software with identical input parameters to output identical results. A difference in any one of these computer results causes the comparator hardware to output a failure indication. This was considered to have a 100% coverage of computer failures. The problem with this system was certainly the relatively large hardware overhead and the limited intelligence of the comparator logic. Some other FADEC systems have implemented only a Watch Dog Timer and Bus Access Supervisory hardware to detect computer malfunctions. With this method the proof for the achievements of the safety requirements have become almost impossible since adequate fault models of the computer components are difficult to establish due to their increasing functional complexity. This paper describes how to develop the safety features for the Computer Design from the Engine Control System Safety Requirements to achieve a full coverage of the potentially critical failure effects with fault tolerant failure recovery functions and a minimum of hardware overhead.


Author(s):  
Charles R. Brinkman

An update is presented of the activities of the American Society for Testing and Materials (ASTM) Committee C-28 on Advanced Ceramics. Since its inception in 1986, this committee, which has five standard producing subcommittees, has written and published over 32 consensus standards. These standards are concerned with mechanical testing of monolithic and composite ceramics, nondestructive examination, statistical analysis and design, powder characterization, quantitative microscopy, fractography, and terminology. These standards ensure optimum material behavior with physical and mechanical property reproducibility, component reliability, and well-defined methods of data treatment and material analysis for both monolithic and composite materials. Committee C-28 continues to sponsor technical symposia and to cooperate in the development of international standards. An update of recent and current activities as well as possible new areas of standardization work will be presented.


Sign in / Sign up

Export Citation Format

Share Document