Structural and mechanical properties of AlTiN/CrN coatings synthesized by a cathodic-arc deposition process

2006 ◽  
Vol 201 (7) ◽  
pp. 4209-4214 ◽  
Author(s):  
Yin-Yu Chang ◽  
Shun-Jan Yang ◽  
Da-Yung Wang
2008 ◽  
Vol 8 (5) ◽  
pp. 2688-2692 ◽  
Author(s):  
Sheng-Min Yang ◽  
Yin-Yu Chang ◽  
Dong-Yih Lin ◽  
Da-Yung Wang ◽  
Weite Wu

Monolayered TiSiN and multilayered TiSiN/CrN coatings were synthesized by a cathodic arc deposition process. The chromium and Ti/Si (80/20 at.%) alloy targets were adopted as the cathode materials, altering the ratio of cathode current (I[TiSi]/I[Cr]) to obtain various multilayer periodic thicknesses of multilayered TiSiN/CrN coatings. X-ray diffraction and TEM analyses showed that all the deposited monolayered TiSiN and multilayered TiSiN/CrN films possessed the B1-NaCl structure. In this study, it was shown that the multilayer periods (Λ) of the TiSiN/CrN deposited at I[TiSi]/I[Cr] cathode current ratios of 1.8, 1.0, and 0.55 were 8.3 nm, 6.2 nm, and 4.2 nm, respectively, with multilayer periodic thicknesses decreasing with smaller I[TiSi]/I[Cr] cathode current ratios. An amorphous phase was found at the boundaries of the TiN/CrN column grains. In addition, the multilayered TiSiN/CrN coatings displayed a lamellar structure that was well-defined and nonplanar between each TiN and CrN layer.


2006 ◽  
Vol 118 ◽  
pp. 323-327 ◽  
Author(s):  
Yin Yu Chang ◽  
Da Yung Wang ◽  
Chi Yung Hung

TiAlN, and TiAlN/CrN nanolayered coatings were synthesized by cathodic-arc evaporation with plasma enhanced duct equipment. Chromium and TiAl (50/50 at %) alloy cathodes were used for the deposition of TiAlN/CrN coatings. The effects of bilayer thickness and chromium content on the microstructure and mechanical properties of TiAlN/CrN nanolayered coatings were studied. The preferred orientation was changed from (200) in TiAlN monolayered coatings to (111) plane in the multilayered TiAlN/CrN coatings. The multilayered TiAlN/CrN coating with periodic thickness of 20 nm and the smallest crystallite size of 28 nm exhibited the highest hardness of 39 GPa. The multilayered TiAlN/CrN coatings also showed the best adhesion strength using scratch tests. It has been found that the structural and mechanical properties of the films were correlated with the addition of chromium and nanolayer thickness.


Sign in / Sign up

Export Citation Format

Share Document