scratch tests
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 71)

H-INDEX

25
(FIVE YEARS 5)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Vanessa Meinhold ◽  
Dominik Höhlich ◽  
Thomas Mehner ◽  
Thomas Lampke

The electrodeposition of iron-nickel-chromium coatings is a more environmentally friendly and economical alternative to hard-chrome coatings made from chromium (VI) electrolytes and stainless-steel bulk materials. The aim of the study was to develop a suitable deposition method for thick and low-crack Fe-Cr-Ni coatings. Iron-nickel-chromium coatings were electrodeposited using a more ecological chromium (III) electrolyte with direct current (DC), stepped direct current, and pulse current (PC). The influence of the deposition method on the electrolyte aging, the alloy composition of the coating, and their microstructure was investigated. Corrosion studies of the Fe-Cr-Ni coatings in 3.5% NaCl solution were performed using polarization tests. Furthermore, hardness measurements and scratch tests were carried out to determine the adhesion strength. Phase analyses were performed by X-ray diffraction, and the chemical composition and microstructure were characterized by scanning electron microscopy. Using the stepped DC and PC method, crack-free Fe-Cr-Ni coatings were successfully deposited.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7789
Author(s):  
Inho Bae ◽  
Byung-Hoon Kim ◽  
Dong-Gon Kim ◽  
Ik-Bu Sohn ◽  
Seong-Won Yang

Corrosion of nitinol (NiTi) is a major factor in the failure of implantable materials. Recently, as the importance of corrosion of metals has increased, testing according to international guidelines is essential. The purpose of this study was to evaluate the corrosion resistance of NiTi wire through heat treatment and passivation process. In this study, NiTi wire used two commercially available products and a self-manufactured stent. Experimental consideration was carried out according to ASTM standards. Heat treatment was carried out in an air or a salt furnace, and the corrosion was measured after additional process, such as passivation and scratch tests. As a result, the metal potential was rapidly decreased in the air furnace group. On the other hand, the potential of wires was dramatically increased in the salt furnace group compared to the air furnace group. The dislocation decreased below the acceptance criteria (>600 mV) within 60 s of heat treatment time in the air furnace. Moreover, the potential was dramatically improved, even after only 20 min of passivation treatment (1076 mV, 442% compared to the non-passivated group), and it continued to rise until 180 min. This phenomenon was similarly observed in the group of self-manufactured stents. The potential slightly decreased by the scratch process (93.1%) was significantly reduced by the air furnace process (315 mV, 24.4% of the nontreated group). In the passivated group of the air furnace sample with reduced potential, the potential was restored to the level before the air furnace (scratch stage) (1032 mV). In conclusion, the heat treatment is preferably carried out in a salt furnace rather than an air furnace, and the passivation process can be an advantageous tool to improve corrosion resistance by suppressing the oxidation process.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3933
Author(s):  
Sung Wook Moon ◽  
Jiae Seo ◽  
Ji-Hun Seo ◽  
Byoung-Ho Choi

Automotive coatings, which comprise multiple layers, i.e., primer, base coating, and clear coat layers, are exposed to various environmental conditions that pose various types of damages to them. In particular, the outer layer of the automotive coating, i.e., the clear coat, is affected significantly by such damages. Therefore, a reliable and durable clear coat must be developed to improve the appearance of automobiles. In this study, a new clear coat based on an acrylic-based clear coat modified using polyrotaxane crosslinkers, which are necklace-shaped supramolecules composed of ring-shaped host molecules, is developed and characterized. The effects of polyrotaxane and silane on the scratch properties and mechanisms of the clear coating are analyzed. It is observed that the critical loads of the clear coat from scratch tests can be improved by adding optimal molecular necklace crosslinkers comprising silane functional groups. The improvement in the scratch properties of the modified acrylic-based clear coat may be attributed to the crosslinking characteristics and dynamic molecular movements of the polyrotaxane. In addition, the effects of environmental factors on the scratch characteristics of the modified acrylic-based clear coat are investigated by addressing the scratch durability of the clear coat.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Wenjie Luo ◽  
Jun Wang ◽  
Wenhao Xu ◽  
Chunguang Ma ◽  
Fangning Wan ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) act as important regulators of tumorigenesis and development in bladder cancer. However, the underlying molecular mechanisms remain elusive. We previously identified a novel lncRNA signature related to immunity and progression in bladder cancer. Here we further explored the function of RP11-89, a lncRNA discovered in the previous signature. Loss- and gain-of function experiments were performed using CCK-8 assay, flow cytometry, Transwell assays, scratch tests and subcutaneous nude mouse models. High-throughput RNA sequencing was conducted to identify dysregulated genes in bladder cancer cells with RP11-89 knockdown or overexpression. Regulation of RP11-89 on miR-129-5p and PROM2 was explored through luciferase reporter assay, RIP assay and RNA pull-down assay. RP11-89 promoted cell proliferation, migration and tumorigenesis and inhibited cell cycle arrest via the miR-129-5p/PROM2 axis. We found that RP11-89 “sponges” miR-129-5p and upregulates PROM2. Elevated PROM2 in cells was associated with attenuated ferroptosis through iron export, formation of multivesicular bodies and less mitochondrial abnormalities. We demonstrated that RP11-89 is a novel tumorigenic regulator that inhibits ferroptosis via PROM2-activated iron export. RP11-89 may serve as a potential biomarker for targeted therapy in bladder cancer.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1271
Author(s):  
Alexey Vereschaka ◽  
Filipp Milovich ◽  
Nikolay Andreev ◽  
Nikolay Sitnikov ◽  
Islam Alexandrov ◽  
...  

The article compares the properties of multilayer composite wear-resistant coatings of Zr–ZrN–(Zr, Mo, Al)N, Ti–TiN–(Ti, Mo, Al)N, and Cr–CrN–(Cr, Mo, Al)N. The investigation was focused on hardness, resistance to fracture during scratch tests, elemental composition, and structure of the coatings. Experiments were carried out to study the wear resistance of coated carbide tools during the turning of 1045 steel and of NiCr20TiAl heat-resistant nickel alloy. With the elemental compositions identical in the content of molybdenum (Mo) and aluminium (Al), identical thicknesses and nanolayer periods of λ, the coatings being studied demonstrated a noticeable difference in wear resistance. Both during the turning of steel and nickel-based alloy, the highest wear resistance was detected for tools with the Zr–ZrN–(Zr, Mo, Al)N coating (the tool life was 3–5 times higher than for uncoated tools). The good wear resistance of the Zr–ZrN–(Zr, Mo, Al)N coating may be related to the optimal combination of hardness and plasticity and the active formation of molybdenum oxide (MoO3) on the coating surface during the cutting, with good tribological and protective properties.


2021 ◽  
Vol 12 (3S) ◽  
pp. 748-753
Author(s):  
K. V. Toropetsky ◽  
G. A. Borisov ◽  
A. S. Smirnov ◽  
A. V. Nosikov

The article describes the possibility of using the granulometric analysis of rock cuttings formed in controlled core scratching tests to estimate the angle of internal friction.The study object is the Kovykta gas-condensate field (GCF) that occupies a wide area in the southeastern part of the Irkutsk amphitheater of the Siberian platform. This uniquely complex geological structure holds significant reserves of hydrocarbons. Its sedimentary cover is composed of the Vendian – lower Paleozoic and partly Riphean formations. Their total thickness exceeds 6000 m, as estimated from the new seismic survey data [Vakhromeev et al., 2019].The sedimentary cover of the Kovykta GCF has been studied by surface and borehole geophysical techniques, remote sensing and geostructural methods, in combination with the tectonophysical approach [Seminsky et al., 2018] based on drilling data, including standard and special core sampling data.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1175
Author(s):  
Adrián Claver ◽  
Jesús J. Randulfe ◽  
José F. Palacio ◽  
Jonathan Fernández de Ara ◽  
Eluxka Almandoz ◽  
...  

Hard coatings, such as AlTiN-TiSiN, deposited by Physical Vapor Deposition (PVD) techniques are widely used in industrial applications to protect and increase the lifetime of industrial components, such as cutting tools, dies, and forming tools. Despite their great properties, such as high hardness and wear and oxidation resistance, they are limited in cases of severe conditions due to the poor adhesion between the coating and the substrate. Duplex treatments have commonly been used to improve the adhesive properties of PVD coatings, especially those of the cathodic arc evaporation type. The purpose of this study is to achieve coatings with the good properties of the Magnetron Sputtering processes but with higher adhesion than that achieved with these techniques, thus achieving coatings that can be used under the most severe conditions. In this work, an AlTiN-TiSiN coating was deposited by a combination of DC Magnetron Sputtering (DCMS) and High-Power Impulse Magnetron Sputtering (HiPIMS) after a gas nitriding pretreatment on 1.2379 and Vanadis 4 tool steels. Mechanical (ultra-microhardness and scratch tests) and tribological tests were carried out to study the improvement in the properties of the coating. Duplex-treated samples showed improved adhesion between the coating and the substrate, with second critical load (Lc2) values greater than 100 N. Furthermore, they showed great toughness and wear resistance. These results show that this type of coating technique could be used in the most extreme applications and that they can compete with other techniques and coatings that to date they have not been able to compete with.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1169
Author(s):  
Vladislav Tarbokov ◽  
Sergey Pavlov ◽  
Egor Smolyanskiy ◽  
Vladimir Uglov ◽  
Mikhail Slobodyan ◽  
...  

The paper presents the effect of irradiation of 321 steel substrates with a high-intense pulsed ion beam (HIPIB) on changes in functional properties of the surface layers and tribological characteristics of AlN coatings subsequently deposited above by the reactive magnetron sputtering method. The morphology of the modified surface layers, their microhardness and free surface energy levels are presented for different HIPIB energy densities. HIPIB irradiation of the substrates caused variations in the results of scratch tests combined with the acoustic emission signal processing. Their analysis has enabled concluding that the crack initiation threshold could be at least doubled for the studied coating/substrate system due to preliminary HIPIB irradiation. Finally, the obtained data were discussed, and future research directions were proposed.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3296
Author(s):  
Junyoung Park ◽  
Nahee Kim ◽  
Kevin Injoe Jung ◽  
Soomin Yoon ◽  
Seung Man Noh ◽  
...  

Silica nanoparticles (G-SiNPs) blocked with 3-glycidoxypropyl trimethoxysilane (GPTS) were newly applied to hydrogel films for improving film coating properties and to distribute the epoxy groups on the film surface. The effects of the content of epoxy-functionalized G-SiNPs on the crosslinking features by photo-induced radical polymerization and the surface mechanical properties of the hydrogel films containing poly(ethylene glycol) dimethacrylate (PEGDMA) and glycidyl methacrylate (GMA) were investigated. The real-time elastic modulus of various PEG hydrogel mixtures with prepared particles was monitored using a rotational rheometer. The distribution of epoxy groups on the crosslinked film surface was directly and indirectly estimated by the elemental analysis of Si and Br. The surface mechanical properties of various hydrogel films were measured by nano-indentation and nano-scratch tests. The relationship between the rheological and surface properties of PEG-based hydrogel films suggests that the use of small amounts of G-SiNPs enhances the surface hardness and crosslinked network of the film and uniformly distributes sufficient epoxy groups on the film surface for further coating applications.


2021 ◽  
Vol 52 (11) ◽  
pp. 5066-5078
Author(s):  
Emilia Skołek ◽  
Monika Meredyk ◽  
Michał Tarnowski ◽  
Tomasz Borowski ◽  
Krzysztof Kulikowski ◽  
...  

AbstractThe aim of this study was to assess whether it is possible to produce a high adhesive carbon coating by applying low-temperature RFCVD and glow discharge methods on nanobainitic X37CrMoV5-1 steel with and without nitrided sublayer. For this purpose, several methods of investigation were used: observations of coating morphology by scanning electron microscopy (SEM), analysis of bonds found in coatings (Raman spectroscopy), microhardness tests and adhesion of coatings (Scratch tests). Our research has shown that low-temperature RFCVD and glow discharge processes of nanobainitic X37CrMoV5-1 steel allow producing carbon coatings that can be described as hardened carbon coatings with very high hardness—> 2000 HV 0.25 in case of RFCVD processes and > 3300 HV 0.025 for glow discharge process and low friction coefficient—near 0.12 at 5 N load. However, the adhesion of produced coatings to the steel substrate strongly depends on the appropriate selection of the process parameters and on the proper preparation of the substrate before the deposition regarding the thermal stability of nanobainite.


Sign in / Sign up

Export Citation Format

Share Document