High-temperature corrosion-resistance performance of electro-thermal explosion plasma spraying FeAl-base coatings

2007 ◽  
Vol 201 (15) ◽  
pp. 6768-6771 ◽  
Author(s):  
Shi-cheng Wei ◽  
Bin-shi Xu ◽  
Hai-dou Wang ◽  
Guo Jin ◽  
Hong Lv
2007 ◽  
Vol 201 (9-11) ◽  
pp. 5294-5297 ◽  
Author(s):  
Shi-cheng Wei ◽  
Bin-shi Xu ◽  
Hai-dou Wang ◽  
Guo Jin ◽  
Hong Lv

Alloy Digest ◽  
1972 ◽  
Vol 21 (10) ◽  

Abstract INCONEL ALLOY 671 is a nickel-chromium alloy having excellent resistance to high-temperature corrosion. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-180. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


Author(s):  
T. Sand ◽  
A. Edgren ◽  
C. Geers ◽  
V. Asokan ◽  
J. Eklund ◽  
...  

AbstractA new approach to reduce the chromium and aluminium concentrations in FeCrAl alloys without significantly impairing corrosion resistance is to alloy with 1–2 wt.% silicon. This paper investigates the “silicon effect” on oxidation by comparing the oxidation behavior and scale microstructure of two FeCrAl alloys, one alloyed with silicon and the other not, in dry and wet air at 600 °C and 800 °C. Both alloys formed thin protective oxide scales and the Cr-evaporation rates were small. In wet air at 800 °C the Si-alloyed FeCrAl formed an oxide scale containing mullite and tridymite together with α- and γ-alumina. It is suggested that the reported improvement of the corrosion resistance of Al- and Cr-lean FeCrAl’s by silicon alloying is caused by the appearance of Si-rich phases in the scale.


2019 ◽  
Vol 70 (6) ◽  
pp. 1071-1086 ◽  
Author(s):  
Gregor Mori ◽  
Karl J. Vidic ◽  
Edith Bucher ◽  
Muhammad Yasir ◽  
Daniel Hornauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document