Influence of bias voltage on microstructure and properties of Al-containing diamond-like carbon films deposited by a hybrid ion beam system

2013 ◽  
Vol 229 ◽  
pp. 217-221 ◽  
Author(s):  
Wei Dai ◽  
Peiling Ke ◽  
Aiying Wang
2004 ◽  
Vol 821 ◽  
Author(s):  
Ai-Ying Wang ◽  
Kwang-Ryeol Lee

AbstractW incorporated diamond-like carbon (W-DLC) films were deposited on silicon (100) wafers by a hybrid deposition method combining ion beam deposition of carbon with DC magnetron sputtering of tungsten. During the films deposition, a wide range of negative bias voltage from 0 to -600 V was applied. W concentration in the film could be controlled by varying the Ar/C6H6 ratio in the supplying gas. In the present experimental condition, WC1−x nano-sized particles were not observed in the amorphous carbon matrix. Regardless of the W concentration in the film, it was found that the G-peak position of the Raman spectra had a lowest value at a bias voltage of - 200 V, which represents the highest sp3 bond fraction in the film. The highest residual stress, hardness and Young's modulus were also observed when the bias voltage was -200 V. This result shows that the mechanical properties of W-DLC films were mainly dependent on the atomic bond structure of carbon. On the other hand, the electrical resistivity significantly decreased by the W incorporation.


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


1996 ◽  
Vol 438 ◽  
Author(s):  
R. L. C. Wu ◽  
W. Lanter

AbstractAn ultra high vacuum ion beam system, consisting of a 20 cm diameter Rf excilted (13.56 MHz) ion gun and a four-axis substrate scanner, has been used to modify large surfaces (up to 1000 cm2) of various materials, including; infrared windows, silicon nitride, polycrystalline diamond, 304 and 316 stainless steels, 440C and M50 steels, aluminum alloys, and polycarbonates; by depositing different chemical compositions of diamond-like carbon films. The influences of ion energy, Rf power, gas composition (H2/CH4 , Ar/CH4 and O2/CH4/H2), on the diamond-like carbon characteristics has been studied. Particular attention was focused on adhesion, environmental effects, IR(3–12 μm) transmission, coefficient of friction, and wear factors under spacelike environments of diamond-like carbon films on various substrates. A quadrupole mass spectrometer was utilized to monitor the ion beam composition for quality control and process optimization.


2006 ◽  
Vol 515 (2) ◽  
pp. 636-639 ◽  
Author(s):  
Š. Meškinis ◽  
V. Kopustinskas ◽  
K. Šlapikas ◽  
S. Tamulevičius ◽  
A. Guobienë ◽  
...  

1994 ◽  
Vol 3 (1-2) ◽  
pp. 119-125 ◽  
Author(s):  
A. Erdemir ◽  
F.A. Nichols ◽  
X.Z. Pan ◽  
R. Wei ◽  
P. Wilbur

2010 ◽  
Vol 205 (3) ◽  
pp. 793-800 ◽  
Author(s):  
Yongxin Wang ◽  
Liping Wang ◽  
Guangan Zhang ◽  
S.C. Wang ◽  
R.J.K. Wood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document