Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte

2013 ◽  
Vol 217 ◽  
pp. 129-139 ◽  
Author(s):  
Ying-liang Cheng ◽  
Xiang-Quan Wu ◽  
Zhi-gang Xue ◽  
E. Matykina ◽  
P. Skeldon ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 620
Author(s):  
Navid Attarzadeh ◽  
C. V. Ramana

A plasma electrolytic oxidation (PEO) is an electrochemical and eco-friendly process where the surface features of the metal substrate are changed remarkably by electrochemical reactions accompanied by plasma micro-discharges. A stiff, adhesive, and conformal oxide layer on the Zr and Zr-alloy substrates can be formed by applying the PEO process. The review describes recent progress on various applications and functionality of PEO coatings in light of increasing industrial, medical, and optoelectronic demands for the production of advanced coatings. Besides, it explains how the PEO coating can address concerns about employing protective and long-lasting coatings with a remarkable biocompatibility and a broad excitation and absorption range of photoluminescence. A general overview of the process parameters of coatings is provided, accompanied by some information related to the biological conditions, under which, coatings are expected to function. The focus is to explain how the biocompatibility of coatings can be improved by tailoring the coating process. After that, corrosion and wear performance of PEO coatings are described in light of recognizing parameters that lead to the formation of coatings with outstanding performance in extreme loading conditions and corrosive environments. Finally, a future outlook and suggested research areas are outlined. The emerging applications derived from paramount features of the coating are considered in light of practical properties of coatings in areas including biocompatibility and bioactivity, corrosion and wear protection, and photoluminescence of coatings


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 306 ◽  
Author(s):  
Xiaopeng Lu ◽  
Yan Chen ◽  
Carsten Blawert ◽  
Yan Li ◽  
Tao Zhang ◽  
...  

The influence of SiO2 particles on the microstructure, phase composition, corrosion and wear performance of plasma electrolytic oxidation (PEO) coatings on AM50 Mg was investigated. Different treatment durations were applied to fabricate coatings in an alkaline, phosphate-based electrolyte (1 g/L KOH + 20 g/L Na3PO4 + 5 g/L SiO2), aiming to control the incorporated amount of SiO2 particles in the layer. It was found that the uptake of particles was accompanied by the coating growth at the initial stage, while the particle content remained unchanged at the final stage, which is dissimilar to the evolution of the coating thickness. The incorporation mode of the particles and phase composition of the layer was not affected by the treatment duration under the voltage-control regime. The corrosion performance of the coating mainly depends on the barrier property of the inner layer, while wear resistance primarily relies on the coating thickness.


Sign in / Sign up

Export Citation Format

Share Document