wear protection
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 59)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 13 (3) ◽  
pp. 164-170
Author(s):  
Sergiu Spinu ◽  
◽  

Various biomedical components, such as dental crowns and hip prostheses, data processing devices, and other numerous mechanical components that transmit load through a mechanical contact, may benefit from a tri-layer design. The coating may be optimized for wear protection and corrosion prevention, whereas the intermediate layer provides increased adhesion between the outer layer and the substrate, and confines the crack propagation. The solution to the contact problem involving tri-layered materials can be pursued numerically with the finite element or the boundary element methods, but semi-analytical techniques benefitting from the efficiency of the fast Fourier transform (FFT) technique have also been successfully applied. At the heart of the FFT-assisted approach lie the frequency response functions (FRFs), which are analytical solutions for fundamental problems of elasticity such as the Boussinesq and Cerruti problems, but expressed in the frequency domain. Considering recent efforts and results in application of FFT to convolution calculations in contact problems, the displacement arising in a tri-layer configuration is computed in the frequency domain, and the contact problem is subsequently solved in the space domain using a state-of-the-art algorithm based on the conjugate gradient method. The method relies on the FRFs derived in the literature for tri-layered materials, and the efficiency and accuracy of computations in the frequency domain is assured by using the Discrete Convolution Fast Fourier Technique (DCFFT) with influence coefficients derived from the FRFs. The computer program reproduces well-known results for bi-layered materials. Numerical simulations are performed for various configurations in which the elastic properties of the layers, as well as the frictional coefficient, are varied. By using the newly advanced simulation technique, design recommendations may be advanced for the optimal configuration of tri-layered materials under contact load.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 117
Author(s):  
Raj Shah ◽  
Rui Chen ◽  
Mathias Woydt

Primary energy has become a vital part of society—from mobility, heating, and cooling to refrigeration to preserve food as well as for simple communication methods, such as texting. As such, pollution and environmental concerns regarding the impact of human activities have become mainstream and efforts have been made to reduce solid wastes as well as CO2 and greenhouse gas emissions. Renewable energy is almost synonymous with environmentally friendly. While energy conversion from fossil fuels and natural gases is responsible for most of the pollution (CO2, NOx, SO2, particulate matter (PM), etc.) in modern society, these processes also generated 86% of global primary energy in 2019. Furthermore, as humans become more dependent on energy, power demands will only increase with time. Material hunger represents another little perceived dependency of human prosperity. The longevity of products and goods is crucial to limit CO2eq emissions associated with material streams. This paper will focus on two relationships: that of CO2 and friction, and that of sustainability and wear protection.


Author(s):  
Siamak Ziakhodadadian ◽  
Tianhui Ren

Abstract In this work, the structural and tribological behavior of graphene oxide samples as a grease addi-tive was studied. By Nd:YAG laser ablation system and using graphite target at two laser energy of 0.3 W and 0.6 W, graphene oxide (GO) samples were successfully prepared. GO samples were characterized using Raman spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDAX). Also, tribological behaviors of the lubricating grease, with and without the graphene oxide in grease, by the pin-on disc tribometer were determined. The Raman spectroscopy measurements showed D and G bound, which confirmed the successful synthesis of the graphene oxide sample and also the I D/I G, decreased by increasing laser power due to decreasing disorder in graphene oxide structure. FESEM images show that by ablating carbon atoms from graphite target in water, particles assemble to form a GO micro-cluster due to thermodynamically agglomeration with average size of about 3–4 µm, which the size of them depends on the laser pulse energy. Based on FTIR and EDAX analysis, GO sample which prepared at lower laser energy possessed the highest content of oxygen and oxygen functional groups. In addition, the results of tribological behavior showed that the friction-reducing ability and antiwear property of the grease can be improved effectively with the addition of GO. However, it is revealed that the small size GO has a better lubricating performance and therefore cluster size appears to play a role in the degree of wear protection due to its impact on the physical and chemical properties. The results of this study indicate that the GO sample prepared at lower laser energy (0.3 W) has a smaller size and the higher the oxygen content therefore provide better friction-reducing and anti-wear effect. Also, additive of graphene oxide in lubricating grease decreases coefficient of friction as well as wear. Based on our results, the application of GO as an additive in grease leads to increased performance of the lubricated kinematic machine.


2021 ◽  
pp. 151635
Author(s):  
Anas Ghailane ◽  
Abegunde Olayinka Oluwatosin ◽  
Hicham Larhlimi ◽  
Chaymae Hejjaj ◽  
Mohammed Makha ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5431
Author(s):  
Karla J. Moreno ◽  
María Teresa Hernández-Sierra ◽  
José E. Báez ◽  
Eloy Rodríguez-deLeón ◽  
Luis Daniel Aguilera-Camacho ◽  
...  

The present study focuses on an introductory analysis of the use of three xanthophylls as additives for green lubricant applications. For this purpose, the additives were characterized by FTIR and 1H-NMR techniques, and the bio-lubricants were described by their physical properties. The effect of the natural compounds on the friction and wear properties of bio-lubricants were evaluated by sliding friction tests under boundary conditions, as confirmed by an analysis of the lubricating film thickness. The antioxidant capacity was analyzed by FTIR spectroscopy. It was observed better wear protection in castor oil with xanthophylls than without these additives. The wear rate was reduced up to 50% compared with neat oil. Lesser beneficial effects were appreciated in friction coefficient since it was increased 25%. The best contribution was observed with astaxanthin as an additive. In addition, a significant improvement in the oxidation of castor oil, complemented with this additive, was exhibited by FTIR analysis. It was found that xanthophylls could be employed as additives for totally biodegradable lubricant applications since they have better tribological and antioxidant behavior than current additives.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chang Liu ◽  
Zhiming Li ◽  
Wenjun Lu ◽  
Yan Bao ◽  
Wenzhen Xia ◽  
...  

AbstractWear-related energy and material loss cost over 2500 Billion Euro per year. Traditional wisdom suggests that high-strength materials reveal low wear rates, yet, their plastic deformation mechanisms also influence their wear performance. High strength and homogeneous deformation behavior, which allow accommodating plastic strain without cracking or localized brittle fracture, are crucial for developing wear-resistant metals. Here, we present an approach to achieve superior wear resistance via in-situ formation of a strong and deformable oxide nanocomposite surface during wear, by reaction of the metal surface with its oxidative environment, a principle that we refer to as ‘reactive wear protection’. We design a TiNbZr-Ag alloy that forms an amorphous-crystalline oxidic nanocomposite surface layer upon dry sliding. The strong (2.4 GPa yield strength) and deformable (homogeneous deformation to 20% strain) nanocomposite surface reduces the wear rate of the TiNbZr-Ag alloy by an order of magnitude. The reactive wear protection strategy offers a pathway for designing ultra-wear resistant alloys, where otherwise brittle oxides are turned to be strong and deformable for improving wear resistance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2187
Author(s):  
Pedro Renato Tavares Avila ◽  
Raíra Chefer Apolinário ◽  
Alisson Mendes Rodrigues ◽  
Jucielle Veras Fernandes ◽  
Romualdo Rodrigues Menezes ◽  
...  

The development of alternatives for wear protection in surface engineering can be responsible for a significant decrease in energy waste as a large amount of the energy produced in the world is lost due to tribological contact. Dynamic Glancing Angle Deposition has been recently evaluated as a route to produce coatings with improved wear performance. In this technique, the substrate oscillates along with a determined range in front of the sputtering target during the growth of the film. In this study, five oscillatory ranges (0, ±5°, ±10°, ±15°, ±20°) were probed to manufacture nanostructured Cr-Al-N coatings using direct current magnetron sputtering, and their impact was investigated on the grain morphology, phase formation, chemical composition, and performance of the coatings. FEG-SEM revealed the formation of multilayer-like architecture across the grains of the coatings. The deposition rate and hardness improved, and a more than 2-fold decrease in the material loss was observed in a comparison between the stationary-deposited conventional coating and the sample produced under ±10° oscillatory range. This indicated the potential use of this technique in future surface engineering applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Laura Rosenkranz ◽  
Silvia Richter ◽  
Georg Jacobs ◽  
Adrian Mikitisin ◽  
Joachim Mayer ◽  
...  

Purpose Rolling bearing operation under mixed and boundary lubrication conditions may lead to heavy adhesive or abrasive wear, which may lead to wear-induced rolling bearing failure. The purpose of this paper is to investigate the wear protection capabilities of different grease compositions at varying temperatures. It is considered that the temperature influences the lubrication conditions, the behaviour of grease components, namely, bleed oil and thickener, as well as the tribofilm formation due to tribo-chemical interactions between additives and surfaces. Design/methodology/approach In this study, four different greases were produced on the basis of a mineral base oil by varying the thickener and the addition of ZDDP. Various grease-lubricated rolling bearing experiments were conducted in a wide temperature range from 0°C to 120°C. Subsequently, the wear pattern, tribofilm formation and grease structures were analysed. Thereby, the influence of the different grease thickeners and the performance of ZDDP as a common antiwear and extreme pressure additive was evaluated. Findings The results show a strong temperature-dependency and allow a classification of temperature ranges concerning wear protection. At low temperatures, all greases provide a very good wear protection without the evidence of additive-based tribofilm formation. In the experiments at elevated temperatures, ZDDP tribofilms were formed. The formation depends on the thickener type: in comparison to lithium thickener, polyurea thickener favours more protective tribofilms at the same temperature. The experimental results show that medium temperatures in the range of 40°C–60°C are critical concerning wear due to the insufficient tribolayer formation and limited load carrying capacity of the grease. Originality/value Temperature is a key operating parameter for grease lubrication in roller bearings. The experimental work enables consideration of different impact pathways of temperature by combining roller bearing tests and microanalysis.


Sign in / Sign up

Export Citation Format

Share Document