Effect of oxygen boost diffusion treatment on the mechanical properties of Ti-6Al-4V alloy

2021 ◽  
Vol 25 ◽  
pp. 101248
Author(s):  
Yong Jiang ◽  
Hairong Mao ◽  
Wang Xiaowei ◽  
Yilan Lu ◽  
Jianming Gong
2021 ◽  
Author(s):  
Chun-Ming Jimmy Lin ◽  
Mohsen Saboktakin Rizi ◽  
Chia-Kai Chen

Abstract This study performed experiments and thermodynamic calculations to elucidate the effects of diffusion temperature on interfacial evolution and mechanical properties of pure titanium and carbon steel (i.e., steel) sheets bonded via a new type of multi-pass continuous hot-roll diffusion with nickel interlayer. The interfacial evolution results revealed that this new type of multi-pass continuous hot-roll diffusion treatment showed a very good adherence due to its metallurgy bonding, because it made a remarked improve to between compound and intermetallic compounds relationship. Secondly, in mechanical properties results revealed that the highest shear strength (∼470 MPa) was obtained at a processing temperature of 850°C. The highest peel strength (∼21 N/mm) was obtained in the sample processed at 900°C. Bonding temperatures above and below these levels reduced the bond strength respectively due to poor atom diffusion and excessive compound formation, resulting in joint failure at the Ti-Ni interface. Extensive cleavage planes with various alignments were observed on the fracture surfaces in these cases. Overall, a hot-rolling temperature of 850°C was found to provide the optimal tradeoff between interfacial bonding strength and ductility. This work provided an economical and convenient solution for broadening the engineering application of interface between sheets of pure titanium and steel.


1974 ◽  
Vol 96 (3) ◽  
pp. 201-206 ◽  
Author(s):  
M. W. Mahoney ◽  
N. E. Paton

Uniaxial tensile properties of the niobium-base alloy Cb-752 have been determined as a function of oxygen, nitrogen, and hydrogen content over a temperature range of −196 C to 200 deg C. Each of these impurities increased the temperature at which a ductile-brittle transition occurs. Although ductility was severely reduced, strength parameters were relatively unchanged making detection of embrittlement by hardness testing difficult. Impurity levels for embrittlement were sufficiently low and the affinity of Cb-752 for contamination sufficiently great that processing operations require strict control. The mechanism of this impurity embrittlement is not well understood. However, observations of fracture surfaces of brittle failures reveal mixed intergranular cleavage with a uniform distribution of precipitates throughout grain boundaries. These observations are discussed in the light of current theories.


Author(s):  
Chun Man Zheng ◽  
Xiao Dong Li ◽  
Yu Xi Yu ◽  
Da Fang Zhao ◽  
Feng Cao

2004 ◽  
Vol 821 ◽  
Author(s):  
A. Karoui ◽  
G. Rozgonyi ◽  
T. Ciszek

AbstractThe effects of oxygen and nitrogen on the mechanical properties of Czochralski (CZ) and float zone silicon have been studied using nano-indentation. Nitrogen free FZ Si exhibited low hardness of 6.49 GPa and elastic modulus of 104 GPa. When doped with 2×1015cm−3 nitrogen, FZ Si hardness and elastic modulus increased to 8.2 and 182 GPa, respectively. In the near-surface denuded zone of N-doped CZ Si (N-CZ) the hardness correlates well with the O and N profiles. Distinct high hardness points, found in the O- and N- rich subsurface region, were attributed to precipitates. Nano-scratch tests of N-CZ Si confirmed the existence of hard phases, mostly small precipitates, whose density, estimated to be 2×1013cm−3, is in the range of previously suggested nuclei density in as-grown N-CZ silicon.


Sign in / Sign up

Export Citation Format

Share Document