A bis-selenophene substituted alkoxy benzene derivative as a highly stable novel electrochromic polymer

2009 ◽  
Vol 159 (5-6) ◽  
pp. 361-365 ◽  
Author(s):  
Y. Arslan Udum ◽  
S. Tarkuc ◽  
L. Toppare
2021 ◽  
Vol 8 (4) ◽  
pp. 726-734
Author(s):  
Sven Macher ◽  
Mauro Sassi ◽  
Luca Beverina ◽  
Uwe Posset ◽  
Marco Schott ◽  
...  

Author(s):  
Minsu Han ◽  
Cheolhyon Cho ◽  
Hwandong Jang ◽  
Eunkyoung Kim

A black-to-transparent electrochromic capacitive window (BTECCW) is explored through the combination of a dual electrochromic polymer (ECP) and a capacitive polymer layer. A black-colored polymer (PEB1) is obtained using 3,3-bis((2-ethylhexyloxy)methyl)-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine...


2017 ◽  
Vol 19 (10) ◽  
pp. 7132-7137 ◽  
Author(s):  
J. F. R. V. Silveira ◽  
A. R. Muniz

The feasibility of functionalized diamond nanothreads generated upon stacking and covalent bonding of benzene derivative molecules is demonstrated by DFT.


2019 ◽  
Vol 111 ◽  
pp. 43-48 ◽  
Author(s):  
Yan Zhou ◽  
Xincai Liu ◽  
Xiaoteng Jia ◽  
Danming Chao

2018 ◽  
Vol 23 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Xiaoming Chen ◽  
Mingdi Yang ◽  
Wenzong Xu ◽  
Qishu Qu ◽  
Qingchun Zhao ◽  
...  

Author(s):  
Douglass F. Taber

Jianbo Wang of Peking University described (Angew. Chem. Int. Ed. 2010, 49, 2028) the Au-promoted bromination of a benzene derivative such as 1 with N-bromosuccinimide. In a one-pot procedure, addition of a Cu catalyst followed by microwave heating delivered the aminated product 2. Jian-Ping Zou of Suzhou University and Wei Zhang of the University of Massachusetts, Boston, observed (Tetrahedron Lett. 2010, 51, 2639) that the phosphonylation of an arene 3 proceeded with substantial ortho selectivity. Yonghong Gu of the University of Science and Technology, Hefei, showed (Tetrahedron Lett. 2010, 51, 192) that an arylpropanoic acid 6 could be ortho hydroxylated with PIFA to give 7. Louis Fensterbank, Max Malacria, and Emmanuel Lacôte of UMPC Paris found (Angew. Chem. Int. Ed. 2010, 49, 2178) that a benzoic acid could be ortho aminated by way of the cyano amide 8. Daniel J. Weix of the University of Rochester developed (J. Am. Chem. Soc. 2010, 132, 920) a protocol for coupling an aryl iodide 10 with an alkyl iodide 11 to give 12. Professor Wang devised (Angew. Chem. Int. Ed. 2010, 49, 1139) a mechanistically intriguing alkyl carbonylation of an iodobenzene 10. This is presumably proceeding by way of the intermediate diazo alkane. Usually, benzonitriles are prepared by cyanation of the halo aromatic. Hideo Togo of Chiba University established (Synlett 2010, 1067) a protocol for the direct electrophilic cyanation of an electron-rich aromatic 15. Thomas E. Cole of San Diego State University observed (Tetrahedron Lett. 2010, 51, 3033) that an alkyl dimethyl borane, readily prepared by hydroboration of the alkene with BCl3 and Et3 SiH, reacted with benzoquinone 17 to give 18. Presumably this transformation could also be applied to substituted benzoquinones. When a highly substituted benzene derivative is needed, it is sometimes more economical to construct the aromatic ring. Joseph P. A. Harrity of the University of Sheffield and Gerhard Hilt of Philipps-Universität Marburg showed (J. Org. Chem. 2010, 75, 3893) that the Co-catalyzed Diels-Alder cyloaddition of alkynyl borinate 21 with a diene 20 proceeded with high regiocontrol, to give, after oxidation, the aryl borinate 22.


Author(s):  
Douglass F. Taber

Stephen G. DiMagno of the University of Nebraska developed (Chem. Eur. J. 2015, 21, 6394) a protocol for the clean monoiodination of 1 to 2. The bromomethylation (or chloromethylation, with HCl) of a benzene derivative is straightforward with formal­dehyde and HBr. Naofumi Tsukada of Shizuoka University designed (Organometallics 2015, 34, 1191) a Cu catalyst that mediated the coupling of an alkyne with the benzyl bromide so produced, effecting net propargylation of 3 with 4 to give 5. Triazenes such as 7, versatile intermediates for organic synthesis, are usually prepared by diazotization of the corresponding aniline. Kay Severin of the Ecole Polytechnique Fédérale de Lausanne established (Angew. Chem. Int. Ed. 2015, 54, 302) an alternative route from the aryl Grignard reagent 6. Ping Lu and Yanguang Wang of Zhejiang University showed (Chem. Commun. 2015, 51, 2840) that dimethylformamide could serve as the carbon source for the conversion of 8 to the nitrile 9. Junha Jeon of the University of Texas at Arlington effected (J. Org. Chem. 2015, 80, 4661; Chem. Commun. 2015, 51, 3778) the reductive ortho silylation of 10 to give 11. Vladimir Gevorgyan of the University of Illinois at Chicago found (Angew. Chem. Int. Ed. 2015, 54, 2255) that the phenol derivative 12 could be ortho carboxylated, leading to 13. Lutz Ackermann of the Georg-August-Universität Göttingen, starting (Chem. Eur. J. 2015, 21, 8812) with the designed amide 14, effected ortho metala­tion followed by coupling, to give the methylated product 15. Tetsuya Satoh and Masahiro Miura of Osaka University used (Org. Lett. 2015, 17, 704) the dithiane of 16 to direct ortho metalation. Coupling with acrylate followed by reductive desulfu­rization led to the ester 17. Jin-Quan Yu of Scripps/La Jolla designed (Angew. Chem. Int. Ed. 2015, 54, 888) the phenylacetamide 18 to direct selective meta metalation, leading to the unsat­urated aldehyde 19. In an extension of the Catellani protocol, Guangbin Dong of the University of Texas prepared (J. Am. Chem. Soc. 2015, 137, 5887) the biphenyl 21 by net meta metalation of the benzylamine 20. Several methods for the de novo assembly of benzene derivatives have recently been put forward. Rajeev S. Menon of the Indian Institute of Chemical Technology condensed (Org. Lett. 2015, 17, 1449) the unsaturated aldehyde 22 with the sulfonyl ester 23 to give 24.


Sign in / Sign up

Export Citation Format

Share Document