scholarly journals Electrochromic Polymer Ink Derived from a Sidechain‐Modified EDOT for Electrochromic Devices with Colorless Bright State

2021 ◽  
Vol 8 (4) ◽  
pp. 726-734
Author(s):  
Sven Macher ◽  
Mauro Sassi ◽  
Luca Beverina ◽  
Uwe Posset ◽  
Marco Schott ◽  
...  
2019 ◽  
Vol 7 (10) ◽  
pp. 2871-2879 ◽  
Author(s):  
Susmita Roy ◽  
Chanchal Chakraborty

Herein, we fabricated the ordered polymer nanostructures by compositing the electrochromic polymer polyFe to significantly improve the colouration efficiency and switching times.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Chung-Wen Kuo ◽  
Jui-Cheng Chang ◽  
Jeng-Kuei Chang ◽  
Sheng-Wei Huang ◽  
Pei-Ying Lee ◽  
...  

Five carbazole-containing polymeric membranes (PDTC, P(DTC-co-BTP), P(DTC-co-BTP2), P(DTC-co-TF), and P(DTC-co-TF2)) were electrodeposited on transparent conductive electrodes. P(DTC-co-BTP2) shows a high ΔT (68.4%) at 855 nm. The multichromic properties of P(DTC-co-TF2) membrane range between dark yellow, yellowish-green, gunmetal gray, and dark gray in various reduced and oxidized states. Polymer-based organic electrochromic devices are assembled using 2,2′-bithiophene- and 2-(2-thienyl)furan-based copolymers as anodic membranes, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as the cathodic membrane. P(DTC-co-TF)/PEDOT-PSS electrochromic device (ECD) displays a high transmittance change (ΔT%) (43.4%) at 627 nm as well as a rapid switching time (less than 0.6 s) from a colored to a bleached state. Moreover, P(DTC-co-TF2)/PEDOT-PSS ECD shows satisfactory optical memory (the transmittance change is less than 2.9% in the colored state) and high coloration efficiency (512.6 cm2 C−1) at 627 nm.


2019 ◽  
Vol 31 (9) ◽  
pp. 1664-1671 ◽  
Author(s):  
Sara Santiago ◽  
Miguel Aller ◽  
F. Javier Campo ◽  
Gonzalo Guirado

2015 ◽  
Vol 3 (37) ◽  
pp. 9715-9725 ◽  
Author(s):  
D. Eric Shen ◽  
Anna M. Österholm ◽  
John R. Reynolds

Through the appropriate choice of counter electrode material, effective electrochromic polymer devices with low operating voltages, no break-in time, high optical contrast, and short switching times are produced.


2004 ◽  
Vol 9 (4) ◽  
pp. 363-372 ◽  
Author(s):  
T. Lukaszewicz ◽  
A. Ravinski ◽  
I. Makoed

A new multilayer electrochromic device has been constructed according to the following pattern: glass1/ITO/WO3/gel electrolyte/BP/ITO/glass2, where ITO is a transparent conducting film made of indium and tin oxide and with the surface resistance equal 8–10 Ω/cm2 . The electrochromic devices obtained in the research are characterized by great (considerable) transmittance variation between coloration and bleaching state (25–40% at applied voltage of 1.5 to 3 V), and also high coloration efficiency (above 100 cm2 /C). Selfconsistent energy bands, dielectric permittivity and optical parameters are calculated using a full-potential linear muffin-tin orbital method. The numerical solution of the Debye-Smoluchowski equations is developed for simulating recombination probability of Li+ ions in amorphous electrolyte.


2011 ◽  
Vol 19 (4) ◽  
pp. 341
Author(s):  
Joel Díaz Reyes ◽  
Aarón Pérez-Benítez ◽  
Valentín Dorantes

<span>Tungsten(VI) oxide can be easily synthesized starting from a standard light bulb. The reaction consists in the oxidation at high temperatures (T ≈ 2000 – 3000° C) of a tungsten filament in presence of air; conditions which can be easily achieved by connecting a broken light bulb (but with its intact filament) to an AC-power supply of 110 volts. The vapor of WO3 is condensed into a beaker in a quantity enough to be characterized by infrared spectroscopy. The experiment is very funny, inexpensive and allows to the teacher to link several topics in current chemistry and physics of the tungsten oxides, such as their nomenclature and technological applications (i.e. electrochromic devices, gasochromic sensors, superalloys or as it is used in home: As a “simple” emisor of light!).</span>


Author(s):  
Sung-Ik Park ◽  
Ying-Jun Quan ◽  
Se-Heon Kim ◽  
Hyungsub Kim ◽  
Sooyeun Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document