Structural controllability and time-to-control of directed scale-free networks with minimum number of driver nodes

2021 ◽  
Vol 156 ◽  
pp. 105025
Author(s):  
Takanobu Imae ◽  
Kai Cai
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicole Balashov ◽  
Reuven Cohen ◽  
Avieli Haber ◽  
Michael Krivelevich ◽  
Simi Haber

Abstract We consider optimal attacks or immunization schemes on different models of random graphs. We derive bounds for the minimum number of nodes needed to be removed from a network such that all remaining components are fragments of negligible size.We obtain bounds for different regimes of random regular graphs, Erdős-Rényi random graphs, and scale free networks, some of which are tight. We show that the performance of attacks by degree is bounded away from optimality.Finally we present a polynomial time attack algorithm and prove its optimal performance in certain cases.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu Kong ◽  
Tao Li ◽  
Yuanmei Wang ◽  
Xinming Cheng ◽  
He Wang ◽  
...  

AbstractNowadays, online gambling has a great negative impact on the society. In order to study the effect of people’s psychological factors, anti-gambling policy, and social network topology on online gambling dynamics, a new SHGD (susceptible–hesitator–gambler–disclaimer) online gambling spreading model is proposed on scale-free networks. The spreading dynamics of online gambling is studied. The basic reproductive number $R_{0}$ R 0 is got and analyzed. The basic reproductive number $R_{0}$ R 0 is related to anti-gambling policy and the network topology. Then, gambling-free equilibrium $E_{0}$ E 0 and gambling-prevailing equilibrium $E_{ +} $ E + are obtained. The global stability of $E_{0}$ E 0 is analyzed. The global attractivity of $E_{ +} $ E + and the persistence of online gambling phenomenon are studied. Finally, the theoretical results are verified by some simulations.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jinlong Ma ◽  
Junfeng Zhang ◽  
Yongqiang Zhang

2021 ◽  
Vol 7 (1) ◽  
pp. eabd8180
Author(s):  
Orlando B. Giorgetti ◽  
Prashant Shingate ◽  
Connor P. O’Meara ◽  
Vydianathan Ravi ◽  
Nisha E. Pillai ◽  
...  

The rules underlying the structure of antigen receptor repertoires are not yet fully defined, despite their enormous importance for the understanding of adaptive immunity. With current technology, the large antigen receptor repertoires of mice and humans cannot be comprehensively studied. To circumvent the problems associated with incomplete sampling, we have studied the immunogenetic features of one of the smallest known vertebrates, the cyprinid fish Paedocypris sp. “Singkep” (“minifish”). Despite its small size, minifish has the key genetic facilities characterizing the principal vertebrate lymphocyte lineages. As described for mammals, the frequency distributions of immunoglobulin and T cell receptor clonotypes exhibit the features of fractal systems, demonstrating that self-similarity is a fundamental property of antigen receptor repertoires of vertebrates, irrespective of body size. Hence, minifish achieve immunocompetence via a few thousand lymphocytes organized in robust scale-free networks, thereby ensuring immune reactivity even when cells are lost or clone sizes fluctuate during immune responses.


2007 ◽  
Vol 377 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Xin-Jian Xu ◽  
Zhi-Xi Wu ◽  
Guanrong Chen

Sign in / Sign up

Export Citation Format

Share Document