spreading dynamics
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 140)

H-INDEX

33
(FIVE YEARS 7)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Mohammad Reza Davahli ◽  
Waldemar Karwowski ◽  
Krzysztof Fiok ◽  
Atsuo Murata ◽  
Nabin Sapkota ◽  
...  

Coronavirus disease 2019 (COVID-19) was first discovered in China; within several months, it spread worldwide and became a pandemic. Although the virus has spread throughout the globe, its effects have differed. The pandemic diffusion network dynamics (PDND) approach was proposed to better understand the spreading behavior of COVID-19 in the US and Japan. We used daily confirmed cases of COVID-19 from 5 January 2020 to 31 July 2021, for all states (prefectures) of the US and Japan. By applying the pandemic diffusion network dynamics (PDND) approach to COVID-19 time series data, we developed diffusion graphs for the US and Japan. In these graphs, nodes represent states and prefectures (regions), and edges represent connections between regions based on the synchrony of COVID-19 time series data. To compare the pandemic spreading dynamics in the US and Japan, we used graph theory metrics, which targeted the characterization of COVID-19 bedhavior that could not be explained through linear methods. These metrics included path length, global and local efficiency, clustering coefficient, assortativity, modularity, network density, and degree centrality. Application of the proposed approach resulted in the discovery of mostly minor differences between analyzed countries. In light of these findings, we focused on analyzing the reasons and defining research hypotheses that, upon addressing, could shed more light on the complex phenomena of COVID-19 virus spread and the proposed PDND methodology.


2022 ◽  
Vol 34 (1) ◽  
pp. 012112
Author(s):  
Sylvia C. L. Durian ◽  
Sam Dillavou ◽  
Kwame Markin ◽  
Adrian Portales ◽  
Bryan O. Torres Maldonado ◽  
...  
Keyword(s):  

2022 ◽  
Vol 412 ◽  
pp. 126595
Author(s):  
WenYao Li ◽  
Xiaoyu Xue ◽  
Liming Pan ◽  
Tao Lin ◽  
Wei Wang

2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander Osadchiev ◽  
Roman Sedakov ◽  
Alexandra Barymova

Wind forcing is the main driver of river plume dynamics. Direction and magnitude of wind determine position, shape, and size of a river plume. The response of river plumes on wind forcing was simulated in many numerical modeling studies; however, in situ measurements of this process are still very scarce. In this study, we report the first direct measurements of frontal movement of a small river plume under variable wind forcing conditions. Using quadcopters, we performed nearly continuous daytime aerial observations of the Bzyb river plume located in the non-tidal Black Sea. The aerial remote sensing was accompanied by synchronous in situ measurements of wind forcing. We assessed spreading patterns of the plume and evaluated movement velocity of its outer border with unprecedentedly high spatial (∼10 m) and temporal (∼1 min) resolution, which was not available in previous studies based on in situ measurements and satellite observations. Based on the collected data, we evaluated the time of response of plume spreading dynamics on changes in wind forcing conditions. The advection velocity of the outer plume border shows linear relation to wind speed with very small response time (10–20 min). The reversal between upstream/downstream plume spreading occurs during several hours under moderate wind forcing conditions. These reversals involve only near-field part of the plume, which cause detachment of the far-field part of the plume. The obtained results are crucial for understanding and simulating spreading dynamics of small river plumes worldwide.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bryan D. James ◽  
Kenneth M. Kimmins ◽  
Minh-Tam Nguyen ◽  
Alexander J. Lausch ◽  
Eli D. Sone

AbstractLike marine mussels, freshwater zebra and quagga mussels adhere via the byssus, a proteinaceous attachment apparatus. Attachment to various surfaces allows these invasive mussels to rapidly spread, however the adhesion mechanism is not fully understood. While marine mussel adhesion mechanics has been studied at the individual byssal-strand level, freshwater mussel adhesion has only been characterized through whole-mussel detachment, without direct interspecies comparisons on different substrates. Here, adhesive strength of individual quagga and zebra mussel byssal plaques were measured on smooth substrates with varying hydrophobicity—glass, PVC, and PDMS. With increased hydrophobicity of substrates, adhesive failures occurred more frequently, and mussel adhesion strength decreased. A new failure mode termed 'footprint failure' was identified, where failure appeared to be adhesive macroscopically, but a microscopic residue remained on the surface. Zebra mussels adhered stronger and more frequently on PDMS than quagga mussels. While their adhesion strengths were similar on PVC, there were differences in the failure mode and the plaque-substrate interface ultrastructure. Comparisons with previous marine mussel studies demonstrated that freshwater mussels adhere with comparable strength despite known differences in protein composition. An improved understanding of freshwater mussel adhesion mechanics may help explain spreading dynamics and will be important in developing effective antifouling surfaces.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022008
Author(s):  
A Atayan ◽  
V Dolgov

Abstract The paper deals with the mathematical models, algorithms and software for mathematical modeling of coastal systems’ water pollution spreading dynamics under various unfavorable phenomena of natural and artificial genesis, developed for high-performance cluster systems. Methods for partitioning the computational domain for solving diffusion-convection problems have been developed, which allow for efficient parallelization of a computationally complex modeling problem, taking into account the architecture of the multiprocessor system used. The developed mathematical models are based on high-precision models of hydrophysics and hydrobiology and take into account the peculiarities of water systems in the south of the Rostov region, as well as factors of hydrobiological dynamics such as microturbulent diffusion and advective transport in various directions, mechanisms of primary and secondary pollution of coastal systems, taking into account currents. The paper presents algorithms for solving a simulated problem based on MPI parallelization technology, as well as based on mixed MPI + OpenMP technology. Numerical experiments have been carried out and the two technologies efficiency comparison has been made in the conditions of computing cluster used.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012054
Author(s):  
A Sakhnov ◽  
O A Volodin ◽  
N I Pecherkin ◽  
A N Pavlenko

Abstract The paper presents numerical modelling of the liquid film spreading dynamics of the R21 (mol. fraction: 0.9) and R114 refrigerants mixture. We considered an outer flow along a round vertical cylinder at Reynolds number of 104 and various contact angles. The simulation was performed in OpenFOAM software on the basis of the volume of fluid (VOF) method. We have shown that the wetting front deforms at wetting angles of 30 and 50 degrees, and regular jets form. At the same time, it was demonstrated that at the wetting angle of 10 degrees the spreading front has practically a flat shape, but one may see some regular thickenings of the liquid film along the contact line of the front.


Sign in / Sign up

Export Citation Format

Share Document