Inhibition of recombinant N-type and native high voltage-gated neuronal Ca2+ channels by AdGABA: Mechanism of action studies

2011 ◽  
Vol 250 (3) ◽  
pp. 270-277 ◽  
Author(s):  
Elizabeth Martínez-Hernández ◽  
Alejandro Sandoval ◽  
Ricardo González-Ramírez ◽  
Grigoris Zoidis ◽  
Ricardo Felix
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [127] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [70]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


2006 ◽  
Vol 90 (1-3) ◽  
pp. 104-117 ◽  
Author(s):  
T CENS ◽  
M ROUSSET ◽  
J LEYRIS ◽  
P FESQUET ◽  
P CHARNET

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Ca2+ channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [127] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [70]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains (S1-S6) and a pore-forming region between S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [110] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [60]. Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I–IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Gating is thought to be associated with the membrane-spanning S4 segment, which contains highly conserved positive charges. Many of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2–δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2–δ1 and α2–δ2 subunits bind gabapentin and pregabalin.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [120] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [68]. Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. Many of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


2018 ◽  
Vol 293 (37) ◽  
pp. 14444-14454 ◽  
Author(s):  
Edgar Garza-Lopez ◽  
Josue A. Lopez ◽  
Jussara Hagen ◽  
Ruth Sheffer ◽  
Vardiella Meiner ◽  
...  
Keyword(s):  

1989 ◽  
Vol 105 (1-2) ◽  
pp. 227-232 ◽  
Author(s):  
Drusilla B. Jaffe ◽  
Shelley S. Marks ◽  
David A. Greenberg

Sign in / Sign up

Export Citation Format

Share Document