scholarly journals Voltage-gated calcium channels in GtoPdb v.2021.2

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [127] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [70]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.

2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [120] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [68]. Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. Many of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Ca2+ channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [127] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [70]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains (S1-S6) and a pore-forming region between S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [110] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [60]. Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I–IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Gating is thought to be associated with the membrane-spanning S4 segment, which contains highly conserved positive charges. Many of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2–δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2–δ1 and α2–δ2 subunits bind gabapentin and pregabalin.


1993 ◽  
Vol 102 (2) ◽  
pp. 217-237 ◽  
Author(s):  
B Mlinar ◽  
B A Biagi ◽  
J J Enyeart

The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage-dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from -50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 465 (2) ◽  
pp. 188-193 ◽  
Author(s):  
Dongyang Huang ◽  
Sha Huang ◽  
Chris Peers ◽  
Xiaona Du ◽  
Hailin Zhang ◽  
...  

2019 ◽  
Vol 116 (38) ◽  
pp. 18951-18961 ◽  
Author(s):  
Richard Banh ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Boris Musset ◽  
Sarah Thomas ◽  
...  

The hydrophobic gasket (HG), a ring of hydrophobic amino acids in the voltage-sensing domain of most voltage-gated ion channels, forms a constriction between internal and external aqueous vestibules. Cationic Arg or Lys side chains lining the S4 helix move through this “gating pore” when the channel opens. S4 movement may occur during gating of the human voltage-gated proton channel, hHV1, but proton current flows through the same pore in open channels. Here, we replaced putative HG residues with less hydrophobic residues or acidic Asp. Substitution of individuals, pairs, or all 3 HG positions did not impair proton selectivity. Evidently, the HG does not act as a secondary selectivity filter. However, 2 unexpected functions of the HG in HV1 were discovered. Mutating HG residues independently accelerated channel opening and compromised the closed state. Mutants exhibited open–closed gating, but strikingly, at negative voltages where “normal” gating produces a nonconducting closed state, the channel leaked protons. Closed-channel proton current was smaller than open-channel current and was inhibited by 10 μM Zn2+. Extreme hyperpolarization produced a deeper closed state through a weakly voltage-dependent transition. We functionally identify the HG as Val109, Phe150, Val177, and Val178, which play a critical and exclusive role in preventing H+ influx through closed channels. Molecular dynamics simulations revealed enhanced mobility of Arg208 in mutants exhibiting H+ leak. Mutation of HG residues produces gating pore currents reminiscent of several channelopathies.


2011 ◽  
Vol 250 (3) ◽  
pp. 270-277 ◽  
Author(s):  
Elizabeth Martínez-Hernández ◽  
Alejandro Sandoval ◽  
Ricardo González-Ramírez ◽  
Grigoris Zoidis ◽  
Ricardo Felix

1998 ◽  
Vol 80 (1) ◽  
pp. 262-269 ◽  
Author(s):  
John A. White ◽  
Ruby Klink ◽  
Angel Alonso ◽  
Alan R. Kay

White, John A., Ruby Klink, Angel Alonso, and Alan R. Kay. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol. 80: 262–269, 1998. Neurons of the superficial medial entorhinal cortex (MEC), which deliver neocortical input to the hippocampus, exhibit intrinsic, subthreshold oscillations with slow dynamics. These intrinsic oscillations, driven by a persistent Na+ current and a slow outward current, may help to generate the theta rhythm, a slow rhythm that plays an important role in spatial and declarative learning. Here we show that the number of persistent Na+ channels underlying subthreshold oscillations is relatively small (<104) and use a physiologically based stochastic model to argue that the random behavior of these channels may contribute crucially to cellular-level responses. In acutely isolated MEC neurons under voltage clamp, the mean and variance of the persistent Na+ current were used to estimate the single channel conductance and voltage-dependent probability of opening. A hybrid stochastic-deterministic model was built by using voltage-clamp descriptions of the persistent and fast-inactivating Na+ conductances, along with the fast and slow K+ conductances. All voltage-dependent conductances were represented with nonlinear ordinary differential equations, with the exception of the persistent Na+ conductance, which was represented as a population of stochastic ion channels. The model predicts that the probabilistic nature of Na+ channels increases the cell's repertoire of qualitative behaviors; although deterministic models at a particular point in parameter space can generate either subthreshold oscillations or phase-locked spikes (but rarely both), models with an appropriate level of channel noise can replicate physiological behavior by generating both patterns of electrical activity for a single set of parameters. Channel noise may contribute to higher order interspike interval statistics seen in vitro with DC current stimulation. Models with channel noise show evidence of spike clustering seen in brain slice experiments, although the effect is apparently not as prominent as seen in experimental results. Channel noise may contribute to cellular responses in vivo as well; the stochastic system has enhanced sensitivity to small periodic stimuli in a form of stochastic resonance that is novel (in that the relevant noise source is intrinsic and voltage-dependent) and potentially physiologically relevant. Although based on a simple model that does not include all known membrane mechanisms of MEC stellate cells, these results nevertheless imply that the stochastic nature of small collections of molecules may have important effects at the cellular and network levels.


2009 ◽  
Vol 87 (1) ◽  
pp. 8-20 ◽  
Author(s):  
Lars Jørn Jensen ◽  
Niels-Henrik Holstein-Rathlou

The largest peripheral blood pressure drop occurs in terminal arterioles (<40 µm lumen diameter). L-type voltage-dependent Ca2+ channels (VDCCs) are considered the primary pathway for Ca2+ influx during physiologic activation of vascular smooth muscle cells (VSMC). Recent evidence suggests that T-type VDCCs are expressed in renal afferent and efferent arterioles, mesenteric arterioles, and skeletal muscle arterioles. T-type channels are small-conductance, low voltage-activated, fast-inactivating channels. Thus, their role in supplying Ca2+ for contraction of VSMC has been disputed. However, T-type channels display non-inactivating window currents, which may play a role in sustained Ca2+ entry. Here, we review the possible role of T-type channels in vasomotor tone regulation in rat mesenteric terminal arterioles. The CaV3.1 channel was immunolocalized in VSMC, whereas the CaV3.2 channel was predominantly expressed in endothelial cells. Voltage-dependent Ca2+ entry was inhibited by the new specific T-type blockers R(–)-efonidipine and NNC 55-0396. The effect of NNC 55-0396 persisted in depolarized arterioles, suggesting an unusually high activation threshold of mesenteric T-type channels. T-type channels were not necessary for conduction of vasoconstriction, but appear to be important for local electromechanical coupling in VSMC. The first direct demonstration of endothelial T-type channels warrants new investigations of their role in vascular biology.


Sign in / Sign up

Export Citation Format

Share Document