TRAIL produced by SAM-1-activated CD4+ and CD8+ subgroup T cells induces apoptosis in human tumor cells through upregulation of death receptors

Author(s):  
Guojun Zhang ◽  
Mingkai Xu ◽  
Xiaoqing Zhang ◽  
Ling Ma ◽  
Huiwen Zhang
2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3076-3076
Author(s):  
Iva Truxova ◽  
Jitka Fucikova ◽  
Irena Moserova ◽  
Simona Partlova ◽  
Jirina Bartunkova ◽  
...  

3076 Background: Recent studies have identified molecular events characteristic of immunogenic cell death. These include surface exposure of calreticulin, HSP70 and HSP90, release of intranuclear HMGB1 and secretion of ATP from dying cells. Several chemotherapeutic agents, including anthracyclins, oxaliplatin and bortezomib, and hypericin-based photodynamic therapy have been described to induce the immunogenic cell death in human tumor cells. We investigated the potential of high hydrostatic pressure (HHP) to induce immunogenic cell death in human tumor cells. Methods: Prostate and ovarian cancer cell lines and primary tumor cells were treated by HHP and we analyzed the kinetics of the expression of immunogenic cell death markers. HHP killed tumor cells expressing immunogenic cell death markers were tested for their ability to activate dendritic cells (DCs), to induce tumor specific T cells and regulatory T cells. Results: HHP induced rapid expression of HSP70, HSP90 and calreticulin on the cell surface of all tested cell lines and primary tumor cells. HHP also induced release of HMGB1 and ATP from treated cells. The kinetics of expression was similar to doxorubicin, HHP, however, induced 1.5-2 fold higher expression of HSP70, HSP90 and calreticulin. The interaction of DCs with HHP-treated tumor cells led to the faster rate of phagocytosis, significant upregulation of CD83, CD86 and HLA-DR and release of IL-6, IL-12p70 and TNFα. The ability of HHP-killed tumor cells to promote DCs maturation was cell contact dependent. DCs pulsed with tumor cells killed by HHP induced high numbers of tumor-specific CD4+ and CD8+IFN-g-producing T cells even in the absence of additional maturation stimulus. DCs pulsed with HHP treated tumor cells also induced the lowest number of regulatory T cells among the tested conditions. Cells treated by HHP can by cryopreserved in liquid nitrogen and retain their immunogenic properties upon thawing thus allowing for their convenient use in the manufacturing of cancer immunotherapy products. Conclusions: High hydrostatic pressure is a reliable and very potent inducer of immunogenic cell death in the wide range of human tumor cell lines and primary tumor cells.


2017 ◽  
Vol 7 (3) ◽  
pp. e1407897 ◽  
Author(s):  
Tiphaine Delaunay ◽  
Mathilde Violland ◽  
Nicolas Boisgerault ◽  
Soizic Dutoit ◽  
Virginie Vignard ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2523-2523
Author(s):  
Masaki Yasukawa ◽  
Hironari Niiya ◽  
Taichi Azuma ◽  
Naoyuki Uchida ◽  
Yoshihiro Yakushijin ◽  
...  

Abstract Background: Cytotoxic T lymphocytes (CTLs) and T-helper type 1 (Th1) cells undoubtedly play a crucial role in the eradication of tumors in vivo. However, the production of Th1 cytokines such as IL-2 and IFN-γ is markedly suppressed in the majority of tumor-bearing hosts. Such defects in Th1-mediated immunity in cancer patients have made it difficult to induce tumor-specific CTLs that promote tumor rejection. Adoptive transfer of tumor-specific CTLs and Th1 cells can overcome the difficulty to induce tumor-specific immune response in cancer patients; however, the generation and expansion of tumor-specific CTLs and Th1 cells in vitro are not easy. In the present study, to overcome this problem, we isolated TCR-α and -β chain genes from a WT1-specific CD8+ CTL clone, which had been shown to exert strong cytotoxicity against hematopoietic malignancies and solid tumors in an HLA-A24-restricted manner, and transduced them into nonspecifically activated human CD8+ and CD4+ T cells. Consequently, both CD8+ and CD4+ T cells appeared to acquire WT1-specific function in an HLA-A24-restricted manner. Methods: A WT1 peptide (CMTWNQMNL)-specific CD8+ CTL clone, TAK-1, was established as reported previously (Blood95:286,2000). TAK-1 exerts cytotoxicity against variety of tumor cells including leukemia, myeloma, and lung cancer cells but not against normal cells in an HLA-A24-restricted manner. cDNAs encoding TCR-α and -β chain genes were amplified from cDNA of TAK-1 by RT-PCR. TCR-α and -β chain cDNAs were inserted into the plasmid vector. Preparation of lentiviral vectors for transduction of TCR-α and -β chain cDNAs was performed as described previously (Cancer Res64:1490,2004). Peripheral blood CD4+ and CD8+ T cells isolated from healthy individuals were cultured with anti-CD3 mAb and retronectin and then infected twice with lentivirus vectors. The infected cells were expanded by culture in the presence of IL-2, IL-12, IFN-γ and anti-IL-4 mAb. Cytotoxicity of CTLs against WT1-peptide-loaded cells and various human tumor cells was examined by a standard 51Cr-release assay. Recognition of tumor cells by Th1 cells was examined by measuring IFN-γ production by ELISA. Results: CD4+ T-cell line (CD4-TCR) and CD8+ T cell line (CD8-TCR) expressing TCR-α and -β chains of TAK-1 were established. Both CD4-TCR and CD8-TCR cells exerted cytotoxicity against WT1 peptide-loaded HLA-A24-positive but not -negative cells. CD8-TCR cells appeared to be cytotoxic against human tumor cells including leukemia, myeloma, and lung cancer cells in an HLA-A24-restricted manner, but did not show any cytotoxicity against HLA-A24-positive normal cells. CD4-TCR cells produced IFN-γ in response to stimulation with HLA-A24-positive but not -negative leukemia cells. Conclusion: The present data demonstrate the functional reconstitution of CD4+ as well as CD8+ T cells by transfer of the αβ TCR complex of a WT1-specific CD8+ CTL clone. Since WT1 is a universal tumor-associated antigen, transfer of TCR genes of WT1-specific CTLs into CD4+ and CD8+ T cells would be useful for Th1-based immunotherapy of various malignancies.


Sign in / Sign up

Export Citation Format

Share Document