scholarly journals Effect of Maxwell stresses on the thermal crack tip field for piezoelectric materials

2015 ◽  
Vol 80 ◽  
pp. 205-209 ◽  
Author(s):  
A.B. Zhang ◽  
B.L. Wang
2007 ◽  
Vol 353-358 ◽  
pp. 231-234
Author(s):  
Hyeon Gyu Beom ◽  
Y.H. Kim ◽  
C.K. Yoon ◽  
Chong Du Cho

A crack on the conductive interface between two dissimilar piezoelectric ceramics under electromechanical loading is investigated. The closed form of the singular crack tip fields for the interface crack is derived here using an analysis based on analytic functions. It is shown that the interfacial crack-tip field consists of a pair of oscillatory singularities. A closed form of the solution for a finite crack on the conductive interface between dissimilar piezoelectric media is also derived.


2014 ◽  
Vol 189 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Jun Lei ◽  
Hongyan Wang ◽  
Chuanzeng Zhang ◽  
Tinh Quoc Bui ◽  
Felipe Garcia-Sanchez

2014 ◽  
Vol 989-994 ◽  
pp. 715-718
Author(s):  
Yao Dai ◽  
Xiao Chong ◽  
Shi Min Li

The crack tip field in functionally graded piezoelectric materials (FGPMs) under mechanical and electrical loadings is studied. Different from previous analyses, all material properties of the functionally graded piezoelectric materials are assumed to be linear function of y perpendicular to the crack. The crack surfaces are supposed to be insulated electrically. Similar to the Williams’ solution of homogeneous elastic materials, the higher order crack tip fields of FGPMs are obtained by the eigen-expansion method.


2016 ◽  
Vol 853 ◽  
pp. 281-285
Author(s):  
Jun Hui Zhang ◽  
Yan Wei Dai

Creep crack within weldments are very common in engineering practices, and the cracking location in these welding structures always appears at the HAZ location. The mismatch effect on the mixed mode creep crack is still not clear in these available literatures. The aim of this paper is to investigate the mismatch influence on the creep crack of mixed mode thoroughly. A mixed mode creep crack within HAZ is established in this paper. The leading factor that dominates the creep crack tip field under mixed loading mode is studied. The influences of mismatch effect on mode mixity, stress distribution and stress triaxiality are proposed. The difference of mixed mode creep crack and normal mode I or mode II creep crack are compared. The influence of mixity factor on the transient and steady state creep of crack tip are also analyzed.


2014 ◽  
Vol 1015 ◽  
pp. 97-100
Author(s):  
Yao Dai ◽  
Xiao Chong ◽  
Ying Chen

The higher order crack-tip fields for an anti-plane crack situated in the interface between functionally graded piezoelectric materials (FGPMs) and homogeneous piezoelectric materials (HPMs) are presented. The mechanical and electrical properties of the FGPMs are assumed to be linear functions of y perpendicular to the crack. The crack surfaces are supposed to be insulated electrically. By using the method of eigen-expansion, the higher order stress and electric displacement crack tip fields for FGPMs and HPMs are obtained. The analytic expressions of the stress intensity factors and the electric displacement intensity factors are derived.


1988 ◽  
Vol 49 (C3) ◽  
pp. C3-307-C3-312
Author(s):  
K. KUSSMAUL ◽  
T. DEMLER ◽  
A. KLENK

Author(s):  
Theodore Zirkle ◽  
Luke Costello ◽  
Ting Zhu ◽  
David L. McDowell

Abstract The diffusion of hydrogen in metals is of interest due to the deleterious influence of hydrogen on material ductility and fracture resistance. It is becoming increasingly clear that hydrogen transport couples significantly with dislocation activity. In this work, we employ a coupled diffusion-crystal plasticity model to incorporate hydrogen transport associated with dislocation sweeping and pipe diffusion in addition to standard lattice diffusion. Moreover, we consider generation of vacancies via plastic deformation and stabilization of vacancies via trapping of hydrogen. The proposed hydrogen transport model is implemented in a physically-based crystal viscoplasticity framework to model the interaction of dislocation substructure and hydrogen migration. In this study, focus is placed on hydrogen transport and trapping within the intense deformation field of a crack tip plastic zone. We discuss the implications of the model results in terms of constitutive relations that incorporate hydrogen effects on crack tip field behavior and enable exploration of hydrogen embrittlement mechanisms.


2019 ◽  
Vol 300 ◽  
pp. 11004 ◽  
Author(s):  
Marcel Wicke ◽  
Angelika Brueckner-Foit

Carefully performed experiments with long cracks in the near-threshold regime have shown that the crack tip field of these cracks significantly deviate from the expected mode-I butterfly-shaped ones and resemble strongly to mixed-mode crack tip fields. A simulation study using a crystal plasticity (CP) approach has been utilized in order to understand this phenomenon. To this end, a digital twin of an aluminum sample fatigued in the near-threshold regime was generated with the help of electron backscatter diffraction (EBSD) and X-ray tomography. Once set-up, the digital twin was loaded in uniaxial tension using the fast spectral solver implemented in the Düsseldorf Advanced Material Simulation Kit (DAMASK). The versatility of this experimental-computational approach for studying the strain partitioning at the crack tip is demonstrated in this work.


Sign in / Sign up

Export Citation Format

Share Document