The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures

Talanta ◽  
2014 ◽  
Vol 129 ◽  
pp. 364-373 ◽  
Author(s):  
Brid Brosnan ◽  
Aidan Coffey ◽  
Elke K. Arendt ◽  
Ambrose Furey
Author(s):  
Mercy Aboh ◽  
Ngozi Amaeze ◽  
Ijeoma Ikeji ◽  
Peters Oladosu

Increasing consumer demand for natural products have renewed food industry attention in bio preservation. Lactic acid bacteria are of particular interest as effective alternative to chemical preservation because of their food grade status. This work explores the effect of antifungal compounds produced by isolates of Lactobacillus sp on some selected pathogenic fungi growth. Samples of diary and fermented products were purchased from commercial vendors within the Federal Capital Territory (FCT) and screened for the presence of Lactobacillus sp. The Lactobacillus sp isolated were screened for antifungal activity against Aspergillus fumigatus, Candida albicans and Trichophyton rubrum using a dual culture assay. Strains with antifungal activity were identified and the fungal inhibitory activity was further evaluated. The effect of abiotic factors on the antifungal activity was evaluated by overlay assay under different temperature and pH. Majority of the identified isolates belonged to the genus Lactobacillus. Lactobacillus sp. produced antifungal compounds under different temperatures (25ºC, 30ºC and 37ºC). The antifungal compounds produced by Lactobacillus strains showed greater inhibitory activity on Aspergillus fumigatus. At 30ºC the percentage zones of inhibition range were 44.4%- 60.4%. All isolates showed stronger antifungal activity when grown at pH 4.0 and 5.0. At a pH 2.0 there was a total inhibition of fungal growth however, there was no inhibition of fungal growth at the pH 7.0. Lactic acid bacteria can be employed as effective alternative to chemical preservatives in food. Temperature and pH of the culture medium could influence the production of antifungal compounds by lactic acid bacteria.


Food Control ◽  
2015 ◽  
Vol 51 ◽  
pp. 433-443 ◽  
Author(s):  
Pedro M. Oliveira ◽  
Brid Brosnan ◽  
Ambrose Furey ◽  
Aidan Coffey ◽  
Emanuele Zannini ◽  
...  

2016 ◽  
Vol 239 ◽  
pp. 79-85 ◽  
Author(s):  
Céline Le Lay ◽  
Emmanuel Coton ◽  
Gwenaëlle Le Blay ◽  
Jean-Marc Chobert ◽  
Thomas Haertlé ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1633
Author(s):  
Denise C. Müller ◽  
Sandra Mischler ◽  
Regine Schönlechner ◽  
Susanne Miescher Schwenninger

In this study, the potential of Leuconostoc as non-conventional sourdough starter cultures was investigated. A screening for antifungal activities of 99 lactic acid bacteria (LAB) strains revealed high suppression of bakery-relevant moulds in nine strains of Leuconostoc with activities against Penicillium sp., Aspergillus sp., and Cladosporium sp. Mannitol production was determined in 49 Leuconostoc strains with >30 g/L mannitol in fructose (50 g/L)-enriched MRS. Further, exopolysaccharides (EPS) production was qualitatively determined on sucrose (40 g/L)-enriched MRS agar and revealed 59 EPS positive Leuconostoc strains that harboured dextransucrase genes, as confirmed by PCR. Four multifunctional Lc. citreum strains (DCM49, DCM65, MA079, and MA113) were finally applied in lab-scale sourdough fermentations (30 °C, 24 h). Lc. citreum was confirmed by MALDI-TOF MS up to 9 log CFU/g and pH dropped to 4.0 and TTA increased to 12.4. Antifungal compounds such as acetic acid, phenyllactic and hydroxyphenyllactic acids were determined up to 1.7 mg/g, 2.1 µg/g, and 1.3 µg/g, respectively, mannitol up to 8.6 mg/g, and EPS up to 0.62 g/100 g. Due to the observed multifunctionalities and the competitiveness in the natural flour microbiota present in sourdoughs, non-conventional LAB genera such as Leuconostoc seem promising for application in sourdough-based bakery products.


2002 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
E Simova ◽  
D Beshkova ◽  
A Angelov ◽  
Ts Hristozova ◽  
G Frengova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document