scholarly journals Voltammetric methods for speciation analysis of trace metals in natural waters

2021 ◽  
Vol 29 ◽  
pp. e00119
Author(s):  
Haitao Han ◽  
Dawei Pan
J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 193-205
Author(s):  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Taile Leswifi ◽  
Maurice S. Onyango

The presence of toxic metals in surface and natural waters, even at trace levels, poses a great danger to humans and the ecosystem. Although the combination of adsorption and coagulation techniques has the potential to eradicate this problem, the use of inappropriate media remains a major drawback. This study reports on the application of NaNO2/NaHCO3 modified sawdust-based cellulose nanocrystals (MCNC) as both coagulant and adsorbent for the removal of Cu, Fe and Pb from aqueous solution. The surface modified coagulants, prepared by electrostatic interactions, were characterized using Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS). The amount of coagulated/adsorbed trace metals was then analysed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). SEM analysis revealed the patchy and distributed floccules on Fe-flocs, which was an indication of multiple mechanisms responsible for Fe removal onto MCNC. A shift in the peak position attributed to C2H192N64O16 from 2θ = 30 to 24.5° occurred in the XRD pattern of both Pb- and Cu-flocs. Different process variables, including initial metal ions concentration (10–200 mg/L), solution pH (2–10), and temperature (25–45 °C) were studied in order to investigate how they affect the reaction process. Both Cu and Pb adsorption followed the Langmuir isotherm with a maximum adsorption capacity of 111.1 and 2.82 mg/g, respectively, whereas the adsorption of Fe was suggestive of a multilayer adsorption process; however, Fe Langmuir maximum adsorption capacity was found to be 81.96 mg/g. The sequence of trace metals removal followed the order: Cu > Fe > Pb. The utilization of this product in different water matrices is an effective way to establish their robustness.


1953 ◽  
Vol 25 (12) ◽  
pp. 1927-1928 ◽  
Author(s):  
D. E. Carritt
Keyword(s):  

2016 ◽  
Vol 497 ◽  
pp. 18-23 ◽  
Author(s):  
Gemma Albendín ◽  
José A. López-López ◽  
Juan J. Pinto

2012 ◽  
Vol 9 (1) ◽  
pp. 55 ◽  
Author(s):  
Heléne Österlund ◽  
Mikko Faarinen ◽  
Johan Ingri ◽  
Douglas C. Baxter

Environmental contextBoth the mobility and toxicity of arsenic in natural waters are related to the aqueous species distribution. Passive sampling using ferrihydrite-backed diffusive gradients in thin films (DGT) devices has in previous studies been characterised to measure labile inorganic arsenic, and the possible contribution of organic species has been disregarded. This study shows that the two most prevalent organic arsenic species might be included in DGT measurements, which should be taken into consideration when evaluating DGT data in future studies. AbstractIn previous publications discussing arsenic determination using ferrihydrite-backed diffusive gradients in thin films (DGT) devices, organic arsenic forms have been disregarded, even though it is known that the two most prevalent in natural waters, dimethylarsinate (DMA) and monomethylarsonate (MMA), may adsorb to ferrihydrite and thereby be included in the measurement. In this work the accumulation of DMA and MMA, as well as inorganic arsenite and arsenate, to ferrihydrite-backed DGT devices was investigated. It could be demonstrated that MMA, and under acidic conditions also DMA, adsorbed to the binding layer and might therefore contribute to the total mass of measured arsenic. Diffusion coefficients were measured for all four species to enable quantification of DGT-labile concentrations of organic and inorganic arsenic. Elution of the analytes from the ferrihydrite binding layer was performed using 1 mL of 1 M NaOH to facilitate arsenic speciation analysis using chromatographic separation. Average recovery rates were between 87 and 108 %. This study shows that the contribution of DMA and MMA to the total accumulated mass must be taken into consideration when evaluating DGT data in future studies.


Sign in / Sign up

Export Citation Format

Share Document