Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution

2010 ◽  
Vol 480 (1-4) ◽  
pp. 213-231 ◽  
Author(s):  
Xiaoping Long ◽  
Chao Yuan ◽  
Min Sun ◽  
Wenjiao Xiao ◽  
Guochun Zhao ◽  
...  
2009 ◽  
Vol 45 (0) ◽  
pp. 110 ◽  
Author(s):  
Leslie Robert Fyffe ◽  
Sandra M. Barr ◽  
Susan C. Johnson ◽  
Malcolm J. McLeod ◽  
Vicki J. McNicoll ◽  
...  

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-17
Author(s):  
Li-Guang Wu ◽  
Xian-Hua Li ◽  
Weihua Yao ◽  
Xiao-Xiao Ling ◽  
Kai Lu

Abstract Widespread Paleozoic and Mesozoic granites are characteristics of SE China, but the geodynamic mechanisms responsible for their emplacement are an issue of ongoing debate. To shed new light on this issue, we present an integrated geochronological and isotopic study of detrital zircon and monazite from Cambrian metasandstones and modern beach sands in the Yangjiang region, SE China. For the Cambrian metasandstone sample, detrital zircon displays a wide age range between 490 and 3000 Ma, while monazite grains record a single age peak of 235 Ma. The results suggest that a significant Triassic (235 Ma) metamorphic event is recorded by monazite but not zircon. For the beach sand sample, detrital zircon ages show six peaks at ca. 440, 240, 155, 135, 115, and 100 Ma, whereas detrital monazite yields a dominant age peak at 237 Ma and a very minor age peak at 435 Ma. Beach sand zircon displays features that are typical of a magmatic origin. Their Hf–O isotopes reveal two crustal reworking events during the early Paleozoic and Triassic, in addition to one juvenile crustal growth event during the Jurassic–Cretaceous. The beach sand monazite records intense Triassic igneous and metamorphic events with significant crustal reworking. Such early Paleozoic and Triassic geochemical signatures of detrital zircon and monazite suggest they were derived from granitoids and metamorphic rocks which formed in intraplate orogenies, i.e., the early Paleozoic Wuyi–Yunkai Orogeny and Triassic Indosinian Orogeny. The Jurassic–Cretaceous signature of detrital zircon may reflect multistage magmatism that was related to subduction of the Paleo-Pacific Plate beneath SE China.


2020 ◽  
Author(s):  
Qian Liu

<p>Locating Tarim during assembly and breakup of Supercontinent Rodinia remains enigmatic, with different models advocating a Tarim-Australia linkage or a location between Australia and Laurentia at the heart of unified Rodinia. In this study, zircon U-Pb dating results first revealed middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. These sedimentary rocks were deposited between ca. 880 and 750 Ma in a rifting-related setting slightly prior to breakup of Rodinia at ca. 750 Ma. A compilation of Neoproterozoic geological records indicates that the Altyn Tagh orogen in southeastern Tarim underwent ca. 1.0-0.9 Ga collision and ca. 850-600 Ma rifting related to assembly and breakup of Rodinia, respectively. In order to place Tarim in Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks in relevant Rodinia blocks are compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among southeastern Tarim, Cathaysia, and North India, but rule out a North or West Australian affinity for Tarim. In addition, detrital zircons from northern Tarim exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, which are comparable to those from northern and western Yangtze. Together with comparable geological responses to assembly and breakup of Rodinia, a new Tarim-South China-North India connection is inferred in the periphery of Rodinia.</p>


Sign in / Sign up

Export Citation Format

Share Document