Precambrian crustal evolution of the southwestern Tarim Craton, NW China: Constraints from new detrital zircon ages and Hf isotopic data of the Neoproterozoic metasedimentary rocks

2019 ◽  
Vol 334 ◽  
pp. 105473 ◽  
Author(s):  
Xiaoping Long ◽  
Bei Xu ◽  
Chao Yuan ◽  
Chuanlin Zhang ◽  
Lei Zhang
2015 ◽  
Vol 52 (12) ◽  
pp. 1182-1190 ◽  
Author(s):  
Amanda Labrado ◽  
Terry L. Pavlis ◽  
Jeffrey M. Amato ◽  
Erik M. Day

A complex array of faulted arc rocks and variably metamorphosed forearc accretionary complex rocks form a mappable arc–forearc boundary in southern Alaska known as the Border Ranges fault (BRF). We use detrital U–Pb zircon dating of metasedimentary rocks within the Knik River terrane in the western Chugach Mountains to show that a belt of Early Cretaceous amphibolite-facies metamorphic rocks along the BRF was formed when older mélange rocks of the Chugach accretionary complex were reworked in a sinistral-oblique thrust reactivation of the BRF during a period of forearc plutonism. The metamorphic subterrane of the Knik River terrane has a maximum depositional age (MDA) of 156.5 ± 1.5 Ma and a detrital zircon age spectrum that is indistinguishable from the Potter Creek assemblage of the Chugach accretionary complex, supporting correlation of these units. These ages contrast strongly with new and existing data that show Triassic to earliest Jurassic detrital zircon ages from metamorphic screens in the plutonic subterrane of the Knik River terrane, a fragmented Early Jurassic plutonic assemblage generally interpreted as the basement of the Peninsular terrane. Based on these findings, we propose the following new terminology for the Knik River terrane: (1) “Carpenter Creek metamorphic complex” for the Early Cretaceous “metamorphic subterrane”, (2) “western Chugach trondhjemite suite” for the Early Cretaceous forearc plutons within the belt, (3) “Friday Creek assemblage” for a transitional mélange unit that contains blocks of the Carpenter Creek complex in a chert–argillite matrix, and (4) “Knik River metamorphic complex” in reference to metamorphic rocks engulfed by Early Jurassic plutons of the Peninsular terrane that represent the roots of the Talkeetna arc. The correlation of the Carpenter Creek metamorphic complex with the Chugach mélange indicates that the trace of the BRF lies ∼1–5 km north of the map trace shown on geologic maps, although, like other segments of the BRF, this boundary is blurred by local complexities within the BRF system. Ductile deformation of the mélange is sufficiently intense that few vestiges of its original mélange fabric exist, suggesting the scarcity of rocks described as mélange in the cores of many orogens may result from misidentification of rocks that have been intensely overprinted by younger, ductile deformation.


1991 ◽  
Vol 28 (8) ◽  
pp. 1254-1270 ◽  
Author(s):  
Gerald M. Ross ◽  
Randall R. Parrish

We address two problems of Cordilleran geology in this study using U–Pb dating of single detrital zircon grains from metasedimentary rocks: the provenance of the Windermere Supergroup, and the age and correlation of metasedimentary rocks within the Shuswap Complex that are at high metamorphic grade. Because some of these rocks are clearly of North American affinity, the ages of zircons provide indirect constraints on the age and distribution of continental basement from which the zircons were derived.A consistent pattern emerges from ages of about 50 grains from six rocks. Nearly all samples analyzed (48–53°N) are characterized by a bimodal distribution of zircon ages of 1.65–2.16 Ga and > 2.5 Ga, with a distinct lack of ages between 2.1 and 2.5 Ga. Exceptions to this pattern are young zircons from two samples, from Valhalla and Grand Forks – Kettle complexes of southeastern British Columbia, that have grains 1435 ± 35 and 650 ± 15 Ma, respectively. These younger grains are inferred to have been derived from magmatic rocks, and they have no obvious source in either the Canadian Shield or the Alberta subsurface basement to the east. The Early Proterozoic and Archean ages of detrital zircons resemble those of dated basement rocks beneath the Alberta Basin as well as basement exposed within the Cordilleran hinterland (gneisses of Thor–Odin, Frenchman Cap, and Malton regions). However, 2.1–2.4 Ga rocks that are extensive in the subsurface of northern Alberta are not represented in the inventory of detrital zircon ages presented in this paper.This pattern suggests that much of the Cordilleran basement between these latitudes is underlain by Archean crust of the Hearne–Wyoming provinces that may be mantled to the west by an orogenic–magmatic belt of Early Proterozoic (1.7–1.9 Ga) age which may largely have been parallel to the present Cordilleran orogen.


2009 ◽  
Vol 262 (3-4) ◽  
pp. 277-292 ◽  
Author(s):  
Katherine E. Howard ◽  
Martin Hand ◽  
Karin M. Barovich ◽  
Anthony Reid ◽  
Benjamin P. Wade ◽  
...  

2019 ◽  
Vol 70 (4) ◽  
pp. 298-310
Author(s):  
Anna Vozárová ◽  
Nickolay Rodionov ◽  
Katarína Šarinová

Abstract U–Pb (SHRIMP) detrital zircon ages from the Early Paleozoic meta-sedimentary rocks of the Northern Gemericum Unit (the Smrečinka Formation) were used to characterize their provenance. The aim was to compare and reconcile new analyses with previously published data. The detrital zircon age spectrum demonstrates two prominent populations, the first, Late Neoproterozoic (545–640 Ma) and the second, Paleoproterozoic (1.8–2.1 Ga), with a minor Archean population (2.5–3.4 Ga). The documented zircon ages reflect derivation of the studied metasedimentary rocks from the Cadomian arc, which was located along the West African Craton. The acquired data supports close relations of the Northern Gemericum basement with the Armorican terranes during Neoproterozoic and Ordovician times and also a close palinspastic relation with the other crystalline basements of the Central Western Carpathians. In comparison, the detrital zircons from the Southern Gemericum basement and its Permian envelope indicate derivation from the Pan-African Belt–Saharan Metacraton provenance.


2013 ◽  
Vol 24 (3-4) ◽  
pp. 1127-1151 ◽  
Author(s):  
Dongfang Song ◽  
Wenjiao Xiao ◽  
Chunming Han ◽  
Zhonghua Tian ◽  
Zhongmei Wang

Sign in / Sign up

Export Citation Format

Share Document