A Tarim-South China-North India connection in the periphery of Rodinia: Constraints from provenance of middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim

Author(s):  
Qian Liu

<p>Locating Tarim during assembly and breakup of Supercontinent Rodinia remains enigmatic, with different models advocating a Tarim-Australia linkage or a location between Australia and Laurentia at the heart of unified Rodinia. In this study, zircon U-Pb dating results first revealed middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. These sedimentary rocks were deposited between ca. 880 and 750 Ma in a rifting-related setting slightly prior to breakup of Rodinia at ca. 750 Ma. A compilation of Neoproterozoic geological records indicates that the Altyn Tagh orogen in southeastern Tarim underwent ca. 1.0-0.9 Ga collision and ca. 850-600 Ma rifting related to assembly and breakup of Rodinia, respectively. In order to place Tarim in Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks in relevant Rodinia blocks are compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among southeastern Tarim, Cathaysia, and North India, but rule out a North or West Australian affinity for Tarim. In addition, detrital zircons from northern Tarim exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, which are comparable to those from northern and western Yangtze. Together with comparable geological responses to assembly and breakup of Rodinia, a new Tarim-South China-North India connection is inferred in the periphery of Rodinia.</p>

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-10
Author(s):  
Qian Liu ◽  
Guochun Zhao ◽  
Jianhua Li ◽  
Jinlong Yao ◽  
Yigui Han ◽  
...  

Abstract The location of the Tarim craton during the assembly and breakup of the Rodinia supercontinent remains enigmatic, with some models advocating a Tarim-Australia connection and others a location at the heart of the unified Rodinia supercontinent between Australia and Laurentia. In this study, our new zircon U-Pb dating results suggest that middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen of the southeastern Tarim craton were deposited between ca. 880 and 760 Ma in a rifting-related setting slightly prior to the breakup of Rodinia at ca. 750 Ma. A compilation of existing Neoproterozoic geological records also indicates that the Altyn Tagh orogen of the southeastern Tarim craton underwent collision at ca. 1.0-0.9 Ga and rifting at ca. 850-600 Ma related to the assembly and breakup of Rodinia. Furthermore, in order to establish the paleoposition of the Tarim craton with respect to Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks were compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among rocks of the southeastern Tarim craton, Cathaysia, and North India but exclude a northern or western Australian affinity. In addition, detrital zircons from the northern Tarim craton exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, comparable to the northern and western Yangtze block. Together with comparable geological responses to the assembly and breakup of the Rodinia supercontinent, we offer a new perspective of the location of the Tarim craton between South China and North India in the periphery of Rodinia.


2021 ◽  
Author(s):  
Qian Liu ◽  
Toshiaki Tsunogae ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao ◽  
...  

<p>Amalgamation of northern Gondwana involves a wealth of present-day East Asian blocks (e.g., South China, North China, Alxa, Tarim, Indochina, Qiangtang, Sibumasu, Lhasa, etc.) due to consumption and closure of the Proto-Tethys Ocean. Locating the Tarim craton during assembly of northern Gondwana remains enigmatic, with different models separating Tarim from Gondwana by a paleoceanic domain throughout the Paleozoic, advocating a long-term Tarim-Australia linkage in the Neoproterozoic to the early Paleozoic, or suggesting a Tarim-Arabia connection in the early Paleozoic.</p><p>This study carried out field-based zircon U-Pb dating and Hf isotopic analyses for early Paleozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. New dating results revealed that the early Paleozoic sedimentary rocks were deposited from ca. 494 to 449 Ma. Provenance tracing indicates the ca. 494-477 Ma sedimentary rocks were primarily sourced from the local Altyn Tagh orogen to the south of the North Altyn Ocean (one branch of the Proto-Tethys Ocean between southeastern Tarim and northern Gondwana). In contrast, the ca. 465-449 Ma sedimentary rocks have remarkably increasing ca. 840-780 Ma, 2.0-1.7 Ga, and 2.7-2.4 Ga detrital zircons, indicating an augmented supply of detritus from the Tarim craton to the north of the North Altyn Ocean. Such a significant provenance shift between ca. 477 and 465 Ma marks the timing of the final closure of the North Altyn Ocean. Combined with the timing of the final closure of other branches of the Proto-Tethys Ocean, the entire Proto-Tethys Ocean might have been progressively closed at ca. 500-420 Ma, resulting in the connection of most East Asian blocks with northern Gondwana. Based on detrital zircon U-Pb-Hf isotopic comparison, Tarim most likely shared a North Indian affinity with many East Asian blocks (such as North Qilian, North Qinling, South China, Indochina, South Qiangtang, etc.). This new finding argues against an Australian or Arabian affinity for the Tarim craton.</p><p>This work was financially supported by National Natural Science Foundation of China Projects (grants 41730213, 42072264, 41902229, 41972237, and 41888101), Hong Kong Research Grants Council General Research Fund (grant 17307918), and Grant-in-Aids for Scientific Research from Japan Society for the Promotion of Science (JSPS) to Prof. Toshiaki Tsunogae (No. 18H01300) and to Dr. Qian Liu (No. 19F19020). JSPS fellowship is also much appreciated.</p>


Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


2016 ◽  
Vol 53 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Xiao Ma ◽  
Kunguang Yang ◽  
Xuegang Li ◽  
Chuangu Dai ◽  
Hui Zhang ◽  
...  

The Jiangnan Orogeny generated regional angular unconformities between the Xiajiang Group and the underlying Sibao Group in the western Jiangnan Orogen along the southeastern margin of the Yangtze Block in southeast Guizhou, South China. Laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) U–Pb zircon dating of two samples of the Motianling granitic pluton yielded U–Pb zircon ages of 826.2 ± 3.4 and 825.5 ± 6.1 Ma, with an average age of 825.6 ± 3.0 Ma, which is considered the minimum depositional age of the Sibao Group. The U–Pb ages of the youngest detrital zircon grains from the Sibao Group and the Xiajiang Group yielded average ages of 834.9 ± 3.8 and 794.6 ± 4.2 Ma, respectively. The depositional age of the Sibao Group can be constrained at 825–835 Ma, and deposition of the Xiajiang Group did not begin before ca. 800 Ma. These results suggest that the Jiangnan Orogeny, which led to the assembly of the Yangtze and Cathaysia blocks, ended at 795–835 Ma on the western segment of the Jiangnan Orogen. The detrital zircon distribution spectrums of the Sibao and Xiajiang groups suggest a provenance from Neoproterozoic basement sedimentary sequences along with a mixture of local Neoproterozoic subduction-related felsic granitoids, distant plutons from the western Yangtze Block and eastern Jiangnan Orogen, and recycled materials from the interior of the Yangtze Block. By comparing the basin evolution histories and magmatic and metamorphic events along the continental margins of the Rodinia supercontinent, it is proposed that the South China Block might have been located at the periphery, adjacent to North India and East Antarctica, rather than in the interior of Rodinia in Neoproterozoic time.


2014 ◽  
Vol 152 (1) ◽  
pp. 80-105 ◽  
Author(s):  
JARKKO LAMMINEN ◽  
TOM ANDERSEN ◽  
JOHAN PETTER NYSTUEN

AbstractThe Neoproterozoic Hedmark Basin in the Caledonides of South Norway was formed at the western margin of the continent Baltica by rifting 750–600 Ma ago. The margin was destroyed in the Caledonian Orogeny and sedimentary basins translated eastwards. This study uses provenance analysis to map the crustal architecture of the pre-Caledonian SW Baltican margin. Conglomerate clasts and sandstones were sampled from submarine fan, alluvial fan and terrestrial glacigenic sedimentary rocks. Samples were analysed for U–Pb isotopes and clast samples additionally for Lu–Hf isotopes. The clasts are mainly granitesc. 960 Ma and 1680 Ma old, coeval with the Sveconorwegian Orogeny and formation of the Palaeoproterozoic Transscandinavian Igneous Belt (TIB). Mesoproterozoic (Sveconorwegian) ages are abundant in the western part of the basin, whereas Palaeoproterozoic ages are common in the east. Lu–Hf isotopes support crustally contaminated source for all clasts linking them to Fennoscandia. Detrital zircon ages of the sandstones can be matched with those from the granitic clasts except for ages within the range 1200–1500 Ma. These ages are typically found in the present-day Telemark, SW Norway. The sandstones and conglomerate clasts in the western part of the Hedmark Basin were sourced from the Sveconorwegian domain in the present SW Norway or its continuation to the present-day NW. The conglomerate clasts in the eastern part of the Hedmark Basin were sourced mainly from the TIB domain or its northwesterly continuation. The Hedmark Basin was initiated within the boundary of two domains in the basement: the TIB and the Sveconorwegian domains.


2020 ◽  
Vol 57 (4) ◽  
pp. 477-493 ◽  
Author(s):  
Zhongjie Xu ◽  
Jintao Kong ◽  
Rihui Cheng ◽  
Liaoliang Wang

Controversies exist regarding the mechanism of formation of basins located on the continental margin of South China as well as when they formed. It was ascertained based on clastic petrology, geochemical analysis, and zircon U–Pb dating that the sedimentary provenances in the eastern Guangdong Basin are mainly felsic igneous rocks from the late Early Jurassic to the Middle Jurassic. The late Early Jurassic Qiaoyuan Formation mainly shows major age peaks at approximately 238 Ma, 259 Ma, and 1858 Ma, and the Middle Jurassic Tangxia Formation shows major age peaks at approximately 169 Ma and 172 Ma. From the late Early Jurassic to the Middle Jurassic in the eastern Guangdong Basin, the source region changes from southwestern South China and southern South China to the eastern Nanling Range. It was determined by comparing the detrital zircon ages of the Qiaoyuan Formation and the Tangxia Formation with those of the late Paleozoic to early Mesozoic basins, and analyzing both the geochemical data and sedimentation, that the eastern Guangdong Basin changed from the basin-arc foreland basin of the late Early Jurassic to the back-arc extension basin of the Middle Jurassic. The changes in early Mesozoic detrital zircon age peaks indicate that the tectonic regime of the eastern Guangdong Basin ended the transformation from the Tethyan tectonic domain to the paleo-Pacific tectonic domain in the early Middle Jurassic (approximately 172 Ma).


1998 ◽  
Vol 35 (12) ◽  
pp. 1380-1401 ◽  
Author(s):  
George E Gehrels ◽  
Gerald M Ross

U-Pb ages have been determined on 250 detrital zircon grains from Neoproterozoic through Permian miogeoclinal strata in British Columbia and Alberta. Most of the grains in these strata are >1.75 Ga and are interpreted to have been derived from nearby basement provinces (although most grains were probably cycled though one or more sedimentary units prior to final deposition). Important exceptions are Ordovician sandstones that contain grains derived from the Peace River arch, and upper Paleozoic strata with detrital zircons derived from the Franklinian orogen, Salmon River arch (northwestern U.S.A.), and (or) Grenville orogen. These provenance changes resulted in average detrital zircon ages that become progressively younger with time, and may also be reflected by previously reported shifts in the Nd isotopic signature of miogeoclinal strata. In addition to the grains that have identifiable sources, grains of ~1030, ~1053, 1750-1774, and 2344-2464 Ma are common in our samples, but igneous rocks of these ages have not been recognized in the western Canadian Shield. We speculate that unrecognized plutons of these ages may be present beneath strata of the western Canada sedimentary basin. Collectively, our data provide a record of the ages of detrital zircons that accumulated along the Canadian Cordilleran margin during much of Paleozoic time. Comparisons between this reference and the ages of detrital zircons in strata of potentially displaced outboard terranes may help reconstruct the paleogeography and accretionary history of the Cordilleran orogen.


2021 ◽  
Author(s):  
Qian Wang ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao

<p>The Chinese North Tianshan (CNTS) extends E-W along the southern part of the Central Asian Orogenic Belt and has undergone complicated accretion-collision processes in the Paleozoic. This study attempts to clarify the late Paleozoic tectonism in the region by investigating the provenance of the Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS by U-Pb dating and Lu-Hf isotopic analyses of detrital zircons. Detrital zircon U-Pb ages (N=519) from seven samples range from 261 ± 4 Ma to 2827 ± 32 Ma, with the most prominent age peak at 313 Ma. There are Precambrian detrital zircon ages (~7%) ranged from 694 to 1024 Ma. The youngest age components in each sample yielded weighted mean ages ranging from 272 ± 9 Ma to 288 ± 5 Ma, representing the maximum depositional ages. These and literature data indicate that some previously-assumed “Carboniferous” strata in the Bogda area were deposited in the Early Permian, including the Qijiaojing, Julideneng, Shaleisaierke, Yangbulake, Shamaershayi, Liushugou, Qijiagou, and Aoertu formations. The low maturity of the sandstones, zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East ­Junggar Arc and the Harlik-Dananhu Arc in the CNTS. The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc. Zircon ɛ<sub>Hf</sub>(t) values have increased since ~408 Ma, probably reflecting a tectonic transition from regional compression to extension. This event might correspond to the opening of the Bogda intra-arc/back arc rift basin, possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean. A decrease of zircon ɛ<sub>Hf</sub>(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision, which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. This research was financially supported by the Youth Program of Shaanxi Natural Science Foundation (2020JQ-589), the NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).</p>


Sign in / Sign up

Export Citation Format

Share Document