Earthquake cycle simulation with a revised rate- and state-dependent friction law

2013 ◽  
Vol 600 ◽  
pp. 196-204 ◽  
Author(s):  
Nobuki Kame ◽  
Satoshi Fujita ◽  
Masao Nakatani ◽  
Tetsuya Kusakabe
2009 ◽  
Vol 4 (2) ◽  
pp. 99-105
Author(s):  
Kazuro Hirahara ◽  

Recent earthquake cycle simulation based on laboratory derived rate and state friction laws with super-parallel computers have successfully reproduced historical earthquake cycles. Earthquake cycle simulation is thus a powerful tool for providing information on the occurrence of the next Nankai megathrust earthquake, if simulation is combined with data assimilation for historical data and recently ongoing crustal activity data observed by networks extending from the land to the ocean floor. Present earthquake cycle simulation assumes simplifications in calculation, however, that differ from actual complex situations. Executing simulation relaxing these simplifications requires huge computational demands, and is difficult with present supercomputers. Looking toward advanced simulation of Nankai megathrust earthquake cycles with next-generation petaflop supercomputers, we present 1) an evaluation of effects of the actual medium in earthquake cycle simulation, 2) improved deformation data with GPS and InSAR and of inversion for estimating frictional parameters, and 3) the estimation of the occurrence of large inland earthquakes in southwest Japan and of Nankai megathrust earthquakes.


2011 ◽  
Vol 4 ◽  
pp. 1456-1465 ◽  
Author(s):  
M. Ohtani ◽  
K. Hirahara ◽  
Y. Takahashi ◽  
T. Hori ◽  
M. Hyodo ◽  
...  

2019 ◽  
Vol 220 (1) ◽  
pp. 598-609 ◽  
Author(s):  
Dunyu Liu ◽  
Benchun Duan ◽  
Bin Luo

SUMMARY We develop a finite element dynamic earthquake simulator, EQsimu, to model multicycle dynamics of 3-D geometrically complex faults. The fault is governed by rate- and state-dependent friction (RSF). EQsimu integrates an existing finite element code EQdyna for the coseismic dynamic rupture phase and a newly developed finite element code EQquasi for the quasi-static phases of an earthquake cycle, including nucleation, post-seismic and interseismic processes. Both finite element codes are parallelized through Message Passing Interface to improve computational efficiency and capability. EQdyna and EQquasi are coupled through on-fault physical quantities of shear and normal stresses, slip-rates and state variables in RSF. The two-code scheme shows advantages in reconciling the computational challenges from different phases of an earthquake cycle, which include (1) handling time-steps ranging from hundredths of a second to a fraction of a year based on a variable time-stepping scheme, (2) using element size small enough to resolve the cohesive zone at rupture fronts of dynamic ruptures and (3) solving the system of equations built up by millions of hexahedral elements. EQsimu is used to model multicycle dynamics of a 3-D strike-slip fault with a bend. Complex earthquake event patterns spontaneously emerge in the simulation, and the fault demonstrates two phases in its evolution. In the first phase, there are three types of dynamic ruptures: ruptures breaking the whole fault from left to right, ruptures being halted by the bend, and ruptures breaking the whole fault from right to left. As the fault bend experiences more ruptures, the zone of stress heterogeneity near the bend widens and the earthquake sequence enters the second phase showing only repeated ruptures that break the whole fault from left to right. The two-phase behaviours of this bent fault system suggest that a 10° bend may conditionally stop dynamic ruptures at the early stage of a fault system evolution and will eventually not be able to stop ruptures as the fault system evolves. The nucleation patches are close to the velocity strengthening region. Their sizes on the two fault segments are different due to different levels of the normal stress.


Sign in / Sign up

Export Citation Format

Share Document