rate and state friction
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Casper Pranger ◽  
Patrick Sanan ◽  
David May ◽  
Laetitia Le Pourhiet ◽  
Alice-Agnes Gabriel

2021 ◽  
Vol 118 (30) ◽  
pp. e2101469118
Author(s):  
Paul Segall ◽  
Kyle Anderson

Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance dc strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challenging to extrapolate to nature. The 2018 eruption of K̄ılauea volcano, Hawaii, caused 62 repeatable collapse events in which the summit caldera dropped several meters, accompanied by MW 4.7 to 5.4 very long period (VLP) earthquakes. Collapses were exceptionally well recorded by global positioning system (GPS) and tilt instruments and represent unique natural kilometer-scale friction experiments. We model a piston collapsing into a magma reservoir. Pressure at the piston base and shear stress on its margin, governed by rate and state friction, balance its weight. Downward motion of the piston compresses the underlying magma, driving flow to the eruption. Monte Carlo estimation of unknowns validates laboratory friction parameters at the kilometer scale, including the magnitude of steady-state velocity weakening. The absence of accelerating precollapse deformation constrains dc to be ≤10 mm, potentially much less. These results support the use of laboratory friction laws and parameters for modeling earthquakes. We identify initial conditions and material and magma-system parameters that lead to episodic caldera collapse, revealing that small differences in eruptive vent elevation can lead to major differences in eruption volume and duration. Most historical basaltic caldera collapses were, at least partly, episodic, implying that the conditions for stick–slip derived here are commonly met in nature.


Author(s):  
Luis Ceferino ◽  
Percy Galvez ◽  
Jean-Paul Ampuero ◽  
Anne Kiremidjian ◽  
Gregory Deierlein ◽  
...  

ABSTRACT This article introduces a framework to supplement short historical catalogs with synthetic catalogs and determine large earthquakes’ recurrence. For this assessment, we developed a parameter estimation technique for a probabilistic earthquake occurrence model that captures time and space interactions between large mainshocks. The technique is based on a two-step Bayesian update that uses a synthetic catalog from physics-based simulations for initial parameter estimation and then the historical catalog for further calibration, fully characterizing parameter uncertainty. The article also provides a formulation to combine multiple synthetic catalogs according to their likelihood of representing empirical earthquake stress drops and Global Positioning System-inferred interseismic coupling. We applied this technique to analyze large-magnitude earthquakes’ recurrence along 650 km of the subduction fault’s interface located offshore Lima, Peru. We built nine 2000 yr long synthetic catalogs using quasi-dynamic earthquake cycle simulations based on the rate-and-state friction law to supplement the 450 yr long historical catalog. When the synthetic catalogs are combined with the historical catalog without propagating their uncertainty, we found average relative reductions larger than 90% in the recurrence parameters’ uncertainty. When we propagated the physics-based simulations’ uncertainty to the posterior, the reductions in uncertainty decreased to 60%–70%. In two Bayesian assessments, we then show that using synthetic catalogs results in higher parameter uncertainty reductions than using only the historical catalog (69% vs. 60% and 83% vs. 80%), demonstrating that synthetic catalogs can be effectively combined with historical data, especially in tectonic regions with short historical catalogs. Finally, we show the implications of these results for time-dependent seismic hazard.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dominik Gräff ◽  
Fabian Walter

AbstractRepeating earthquakes are a global phenomenon of tectonic faults. Multiple ruptures on the same fault asperities lead to nearly identical waveforms characteristic for these seismic events. We identify their microseismic counterparts beneath an Alpine glacier, where basal sliding accounts for a significant amount of ice flow. In contrast to tectonic faults, Alpine glacier beds are subject to large variations in sliding velocity and effective normal stresses. This leads to inter- and sub-seasonal variations in released seismic moment from stick–slip asperities, which we explain with the rate-and-state friction formalism. During summer, numerically modelled effective normal stresses at asperities are three times higher than in winter, which increases the local shear resistance by the same factor. Stronger summer asperities therefore tend to form in bed regions well connected to the efficient subglacial drainage system. Moreover, asperities organise themselves into a state of subcriticality, transferring stresses between each other. We argue that this seismic stick–slip behavior has potentially far-reaching consequences for glacier sliding and in particular for catastrophic failure of unstable ice masses.


2021 ◽  
Author(s):  
Saumik Dana ◽  
Kartik Reddy Lyathakula

We arrive at estimates of critical slip distance in the rate and state model for friction evolution using synthetic earthquake data via the Bayesian inference. The conventional solution to the inverse problem is the deterministic parameter values, which may not represent the true value, and quantifying uncertainty in the model parameters increases confidence in the estimation. In this work, the uncertainty in the critical slip distance is estimated by the posterior distribution obtained through the Bayesian inversion.


Author(s):  
Seth Saltiel ◽  
Christine McCarthy ◽  
Timothy T. Creyts ◽  
Heather M. Savage

Abstract Observations of glacier slip over till beds, across a range of spatial and temporal scales, show abundant seismicity ranging from Mw∼−2 microearthquakes and tremor (submeter asperities and millisecond duration) to Mw∼7 slow-slip events (∼50  km rupture lengths and ∼30  min durations). A complete understanding of the mechanisms capable of producing seismic signals in these environments represents a strong constraint on bed conditions. In particular, there is a lack of experimental confirmation of velocity-weakening behavior of ice slipping on till, where friction decreases with increasing velocity—a necessity for nucleating seismic slip. To measure the frictional strength and stability of ice sliding against till, we performed a series of double-direct-shear experiments at controlled temperatures slightly above and below the ice melting point. Our results confirm velocity-strengthening ice–till slip at melting temperatures, as has been found in the few previous studies. We provide best-fit rate-and-state friction parameters and their standard deviations from averaging 13 experiments at equivalent conditions. We find evidence of similar velocity-strengthening behavior with 50% by volume debris-laden ice slid against till under the same conditions. In contrast, velocity-weakening and linear time-dependent healing of ice–till slip is present at temperatures slightly below the melting point, providing an experimentally supported mechanism for subglacial seismicity on soft-beds. The stability parameter (a−b) decreases with slip velocity, and evolution occurs over large (mm scale) displacements, suggesting that shear heating and melt buildup is responsible for the weakening. These measurements provide insight into subglacial stiffness in which seismicity of this type might be expected. We discuss glaciological circumstances pointing to potential field targets in which to test this frozen seismic asperity hypothesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingdi Luo ◽  
Zhen Liu

AbstractSlow earthquakes including tremor and slow-slip events are recent additions to the conventional earthquake family and have a close link to megathrust earthquakes. Slow earthquakes along the Cascadia subduction zone display a diverse behavior at different spatiotemporal scales and an intriguing increase of events frequency with depth. However, what causes such variability, especially the depth-dependent behavior is not well understood. Here we build on a heterogeneous asperities-in-matrix fault model that incorporates differential pore pressure in a rate-and-state friction framework to investigate the underlying processes of the observed episodic tremor and slow-slip (ETS) variability. We find that the variations of effective normal stress (pore pressure) is one important factor in controlling ETS behavior. Our model reproduces the full complexity of ETS patterns and the depth-frequency scaling that agree quantitatively well with observations, suggesting that fault zone heterogeneities can be one viable mechanism to explain a broad spectrum of transient fault behaviors.


Author(s):  
Duo Li ◽  
Yajing Liu

Paleo-earthquakes along the Cascadia subduction zone inferred from offshore sediments and Japan coastal tsunami deposits approximated to M9+ and ruptured the entire margin. However, due to the lack of modern megathrust earthquake records and general quiescence of subduction fault seismicity, the potential megathrust rupture scenario and influence of downdip limit of the seismogenic zone are still obscure. In this study, we present a numerical simulation of Cascadia subduction zone earthquake sequences in the laboratory-derived rate-and-state friction framework to investigate the potential influence of the geodetic fault locking on the megathrust sequences. We consider the rate-state friction stability parameter constrained by geodetic fault locking models derived from decadal GPS records, tidal gauge and levelling-derived uplift rate data along the Cascadia margin. We incorporate historical coseismic subsidence inferred from coastal marine sediments to validate our coseismic rupture scenarios. Earthquake rupture pattern is strongly controlled by the downdip width of the seismogenic, velocity-weakening zone and by the earthquake nucleation zone size. In our model, along-strike heterogeneous characteristic slip distance is required to generate margin-wide ruptures that result in reasonable agreement between the synthetic and observed coastal subsidence for the AD 1700 Cascadia Mw∼9.0 megathrust rupture. Our results suggest the geodetically inferred fault locking model can provide a useful constraint on earthquake rupture scenarios in subduction zones. This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe’.


2021 ◽  
Author(s):  
Diego Molina ◽  
Jean-Paul Ampuero ◽  
Andres Tassara

<p>Subduction earthquakes are among the most devastating natural hazards across the planet and yet the factors controlling their size remain poorly understood. It is thus important to investigate the mechanisms controlling rupture arrest and runaway, in particular the nature of rupture barriers (areas where earthquakes tend to stop). Geodetic and seismic observations along several faults suggest that barriers are mostly creeping (low seismic coupling). It is often interpreted that creeping barriers are governed by velocity-strengthening friction (VS), which is a sufficient condition for stable slip. However, some barriers have been observed to host intermediate magnitude earthquakes or to be completely ruptured by a large earthquake. Therefore, the frictional properties of seismic barriers may not be restricted to VS. In particular, the possibility of velocity-weakening (VW) areas behaving as barriers needs to be further explored.</p><p>In this work, we characterize the multiple behaviors of seismic barriers on faults governed by velocity-weakening (VW) rate-and-state friction, using earthquake cycle simulations. We consider a 2D model, where a central VW area has a larger critical slip distance (Dc) or higher normal stress (σ) than the surrounding VW areas. We found that the central areas can behave as permanent or temporal barriers to earthquake propagation if their Dc or σ are large enough. On permanent barriers, creep occurs steadily. However, on temporary barriers, the locking degree changes throughout the cycle, despite frictional properties remaining constant.</p><p>To understand the efficiency of VW barriers (that is, to determine under what conditions they can stop ruptures), we use fracture mechanics theory. We found that barrier efficiency depends mainly on the ratio between the fracture energy of the barrier, which is proportional to Dc and normal stress, and the energy release rate of the neighboring seismic segment, which is proportional to its stress drop squared and length. If geological features of the overriding and subducting plates affect Dc and σ on the megathrust, our results support the idea of structural controls on the seismic behavior of megathrusts. Thus, understanding how geological features are linked to fracture energy may contribute to seismic hazard assessment by constraining rupture arrest and multi-segment ruptures in earthquake scenarios.</p>


Sign in / Sign up

Export Citation Format

Share Document