Subsurface structure of Sumani segment in the Great Sumatran Fault inferred from magnetic and gravity modeling

2021 ◽  
pp. 229149
Author(s):  
Harman Amir ◽  
Satria Bijaksana ◽  
Darharta Dahrin ◽  
Andri Dian Nugraha ◽  
Ilham Arisbaya ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Arkoprovo Biswas ◽  
Animesh Mandal ◽  
Shashi Prakash Sharma ◽  
William Kumar Mohanty

South Purulia Shear Zone (SPSZ) is an important area for the prospect of uranium mineralization and no detailed geophysical investigations have been carried out in this region. To delineate the subsurface structure in the present area, vertical electrical soundings using Schlumberger array and gravity survey were carried out along a profile perpendicular to the SPSZ. Apparent conductance in the subsurface revealed a possible connection from SPSZ to Raghunathpur. The gravity model reveals the presence of a northerly dipping low density zone (most likely the shear zone) extending up to Raghunathpur under a thin cover of granitic schist of Chotanagpur Granite Gneissic Complex (CGGC). The gravity model also depicts the depth of the zone of density low within this shear zone at~400 m near Raghunathpur village and this zone truncates with a steep slope. Integration of resistivity and gravity study revealed two possible contact zones within this low density zone in the subsurface at depth of 40 m and 200 m. Our study reveals a good correlation with previous studies in Raghunathpur area characterized by medium to high hydro-uranium anomaly. Thus the conducting zone coinciding with the low gravity anomaly is inferred to be a possible uranium mineralized zone.


2021 ◽  
Author(s):  
Muhammad Yanis ◽  
Faisal Abdullah ◽  
Nasrullah Zaini ◽  
Nazli Ismail

Author(s):  
Carlos Ortiz-Aleman ◽  
Ronald Martin ◽  
Jaime Urrutia-Fucugauchi ◽  
Mauricio Orozco del Castillo ◽  
Mauricio Nava-Flores

Author(s):  
Clementine Chirol ◽  
Kate L. Spencer ◽  
Simon J. Carr ◽  
Iris Möller ◽  
Ben Evans ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Saurabh Mittal ◽  
S. P. Sharma ◽  
Arkoprovo Biswas ◽  
D. Sengupta

This study is an attempt to correlate VLF-EM data with the radiometric measurements to decipher the subsurface structure and to locate uranium mineralization in the shear zone. The study area is around Beldih mine which is an open cast apatite mine located on the South Purulia Shear Zone. VLF method has been applied to map the structure and the presence of radioactive minerals has been delineated by the detection of highαandγcounts with respect to the background radiations. High radiation counts and high surfaceγactivity are found just above the higher apparent current-density zones in all the profiles studied, at various locations, indicating uranium and/or thorium mineralization as well as good correlation between these techniques.


Geophysics ◽  
1986 ◽  
Vol 51 (1) ◽  
pp. 12-19 ◽  
Author(s):  
James F. Mitchell ◽  
Richard J. Bolander

Subsurface structure can be mapped using refraction information from marine multichannel seismic data. The method uses velocities and thicknesses of shallow sedimentary rock layers computed from refraction first arrivals recorded along the streamer. A two‐step exploration scheme is described which can be set up on a personal computer and used routinely in any office. It is straightforward and requires only a basic understanding of refraction principles. Two case histories from offshore Peru exploration demonstrate the scheme. The basic scheme is: step (1) shallow sedimentary rock velocities are computed and mapped over an area. Step (2) structure is interpreted from the contoured velocity patterns. Structural highs, for instance, exhibit relatively high velocities, “retained” by buried, compacted, sedimentary rocks that are uplifted to the near‐surface. This method requires that subsurface structure be relatively shallow because the refracted waves probe to depths of one hundred to over one thousand meters, depending upon the seismic energy source, streamer length, and the subsurface velocity distribution. With this one requirement met, we used the refraction method over a wide range of sedimentary rock velocities, water depths, and seismic survey types. The method is particularly valuable because it works well in areas with poor seismic reflection data.


Sign in / Sign up

Export Citation Format

Share Document