mineralized zone
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
O. J. Airen ◽  
D. A. Babaiwa

2D Electrical Resistivity (ER) and Instantaneous Potential (IP) geophysical techniques were used at Eziama village in Abia state of Nigeria to investigate possible Pb-Zn mineralization. The dipole-dipole electrode configuration was employed for data acquisition and Earth Imager software was used for inversion of the acquired data. The analysis of the result of the study showed the presence of the Pb-Zn ore along traverses 1, 2 and 3 while traverses 4 and 5 appear barren. Along traverse 1, the mineralized zone falls within the fractured basement and is characterized by low resistivity (about 316 – 5623 ohm-m) and high chargeability (33.2 – 128 ns) at lateral distance of 73 – 103 m. On traverse two, the ore body was identified at lateral distance of about -18 to 53 m as delineated on the IP structure with resistivity and chargeability of the anomalous zone ranging from 4.6 – 677 ohm-m and 41.8 – 142 ns respectively at depth of about 21.4 m while on traverse three, two ore bodies labeled a, a’ and b, b’ on the ER and IP cross-sections were delineated at lateral distance of about -130 to -93 m and 78 to 98 m respectively with depth to the top of the suspected ore bodies ranging from about 7.1 m for body ‘a’ and about 14.3 m for ‘a’. Traverses four and five however showed no prospect for Pb-Zn mineralization. The result of this investigation has once again demonstrated the usefulness of combined electrical resistivity and induced polarization techniques in solid mineral exploration.


Author(s):  
O. J. Airen ◽  
D. A. Babaiwa

A combined Electrical Resistivity (ER) and Induced Polarization (IP) techniques were carried out at Iyamitet, Cross-River State Nigeria with the aim of mapping the Barite-Galena mineralization zone within the area. Five traverses were established in orthogonal directions with length of 100 m. The traverses were established in grid format for better coverage of the study area and Dipole-Dipole electrode configuration was adopted for the data acquisition for both ER and IP. Res2Dinvx software was employed for the joint inversion of the data and the resulting 2D resistivity and chargeability images of the subsurface were interpreted qualitatively and semi-quantitatively to locate the mineralized zone. The result of the investigation revealed that the resistivity values of the suspected mineralized zones fall between 1023 ohm-m to 377599 ohm-m and the chargeability falls between 232 msec and 727 msec. The depth to the top of some of the mineralized zones is as shallow as 1.25 m and as deep as 19.8 m in other places. The results of the investigation have indicated the presence of the Barite-Galena ore within the area and this manifested as high resistivity and high chargeability zones along the traverses. The result of this investigation highlights the efficiency of combined geophysical techniques in locating mineralized zones in a basement area.


2021 ◽  
pp. 1-45
Author(s):  
Oluwaseun S. Ogungbemi ◽  
John O. Amigun ◽  
Gbenga M. Olayanju ◽  
Ganiyu Badmus

Integrated airborne and ground geophysical studies were conducted in parts of Ilesha schist belt, southwestern Nigeria. The goal was to provide a useful guide for mineral prospecting, with the hope of considerably narrowing down the future search for mineral deposits within the study area. Aeromagnetic and aeroradiometric data were analyzed for the reconnaissance study. In addition, the reduction-to-equator transform, analytic signal, tilt derivative, and Euler deconvolution filters were applied to the aeromagnetic data to enhance shallow and deep geologic features. The aeroradiometric data were used to determine spatial variations in the concentrations of uranium (U), thorium (Th), and potassium (K) in near-surface rocks and to map spatial lithologic changes. The 2D-magnetic sections, radiometric profiles, inverted resistivity, and induced polarization (IP) sections were generated from the integrated geophysical data. The electrical resistivity tomography (ERT) results reveal the subsurface heterogeneity (to a depth of approximately 197 m) and varied geoelectric layers (topsoil, lateritic-clay, weathered rock, and basement rock). The IP sections show varying degrees of chargeability and features that suggest the presence of disseminated mineralized bodies concealed in some areas. The overburden thickness varies between 4 and 85 m as determined from the 2D-magnetic and electric resistivity sections. Anomalous peaks on profiles of elemental ratios (eTh/K, eTh/eU, and K/eU) correlate with the results of IP and ERT. Data sets are well correlated and highlight areas with relevant structural and lithologic signatures favorable for mineral deposition. The methodology adopted in our research is well adapted, and the interpretation techniques provided insight into regional and local lithostructural settings. These anomalous areas are suggested as targets for future exploration works.


2021 ◽  
Author(s):  
Zeling Long ◽  
Koichi Nakagawa ◽  
Zhanwen Wang ◽  
Peter C Amadio ◽  
Chunfeng Zhao ◽  
...  

Rotator cuff injuries increase with age. The enthesis is the most frequent site of rotator cuff injury and degeneration. Understanding age-related changes of the enthesis are essential to determine the mechanism of rotator cuff injuries, degeneration, and to guide mechanistically driven therapies. In this study, we explored age-related cellular changes of the rotator cuff enthesis in young, mature, and aged rats. Here we found that the aged enthesis is typified by an increased mineralized zone and decreased non-mineralized zone. Proliferation, migration, and colony forming potential of rotator cuff derived cells (RCECs) was attenuated with aging. The tenogenic and chondrogenic potential were significantly reduced, while the osteogenic potential increased in aged RCECs. The adipogenic potential increased in RCECs with age. This study explores the cellular differences found between young, mature, and aged rotator cuff enthesis cells and provides a basis for further delineation of mechanisms and potential therapeutics for rotator cuff injuries.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 560
Author(s):  
Andressa A. Silva ◽  
Pedro Cordeiro ◽  
Sean C. Johnson ◽  
Leonardo E. Lagoeiro ◽  
Loretta Corcoran ◽  
...  

The Tullacondra Cu-Ag deposit is located on the southern margin of the Lower Carboniferous Irish Midlands orefield and contains historical reserves of approximately 4.2 Mt at 0.7% Cu and 27.5 ppm Ag. The deposit is hosted within the hanging wall of a feeder fault, the EW-trending Tullacondra Fault, where sulfides and sulfosalts containing elevated Cu, Ag, As, and Sb deposited, whereas Zn and Pb are nearly absent. The deposition of Cu sulfides in Tullacondra took place along bedding and bedding-parallel dissolution seams, suggesting an epigenetic mineralization that formed: (a) the Transition Series-hosted mineralized zone containing elevated Cu associated with Ag, As, and Sb; (b) the Lower Limestone Shale-hosted mineralized zone, Cu-dominated and depleted in other metals, and (c) a near-vertical mineralized zone associated with fractures related to the Tullacondra Fault. Some similarities are shared with Irish-type Zn-Pb deposits, such as structural and stratigraphic controls, and elevated Cu, Ag, As, and Sb within feeder-fault proximal zones (such as in Lisheen and Silvermines). Whether Tullacondra mineralization was part of the Irish-type system or not, our deposit geometry evaluation, whole-rock geochemistry, paragenetic sequence, and texture relationships indicate that Cu-Ag deposition involved the reaction of metal-bearing fluids with carbonate rocks.


2021 ◽  
Vol 20 (1) ◽  
pp. 141-150
Author(s):  
V.B. Olaseni ◽  
J.O. Airen

The occurrence of solid minerals in Ugonoba community was investigated using the 3D electrical resistivity method. Data was acquired  using PASI 16GL Terrameter using the wenner electrode configuration with a view to delineating mineral deposits in the study area.  During the reconnaissance survey, the outlook of some geological features in the form of outcrops on the surface formed part of the motivation for the geophysical survey within the Ugonoba area. Ten traverses of 200 m maximum spread and 10m electrode spacing with total depth of 40.07 m were obtained in the study area to form a square grid. The acquired data was first processed and inverted using RES2DINV software to generate ten 2-D model images and later collated into 3-D using the inversion code of RES3DINV software which automatically determines a horizontal 3D depth slice, cubes and block models of resistivity distribution. These models generated were interpreted and used to ascertain the true resistivity, lithologic formation, depth extent to any buried mineral and aggregate deposited in the study area. The extracted 3D model images revealed evidence of some geological materials/minerals in the study area which fall within the high resistivity range of 2500 Ωm to 14376 Ωm. It can therefore be inferred from the standard resistivity table that the lithology of study area is composed of non-metallic type of mineral resources which are: clayey sand, lateritic clayey sand,  sandstone and limestone. The estimated quantity in metric ton for the dominant lithology (sandstone, granite and limestone) is ± 10% of 1,257,142.9 which can be commercially explored. Keywords: Wenner-wenner array, outcrop, minerals, RES3DINV, block models.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Xiaoyan Liu ◽  
Lin Li ◽  
Shengrong Li ◽  
M. Santosh ◽  
Yujie Li

The northern flank of the North China Craton (NCC) hosts a linear zone of gold, molybdenum, silver, lead, and zinc polymetallic ore deposits. Among these, the Yingfang Pb-Zn-Ag deposit is located in the central part of the Yanshan–Liaoxi metallogenic belt (YLMB) which extends for approximately 1000 km and forms part of the major mineralized zone. In this study, we characterize the mineralization and trace the ore genesis based on new sulfur and lead isotopic geochemistry and evaluate the timing of mineralization from Rb-Sr isotope dating of sulfides. The pyrite δ34S values range from +3.2‰ to +5.8‰ with a mean at +4.07‰, close to the values of mantle and meteorite sulfur. The 206Pb/204Pb values range from 16.833 to 18.956, 207Pb/204Pb from 15.374 to 15.522, and 208Pb/204Pb from 37.448 to 37.928. Five samples of sulfide, from the Yingfang deposit, yield a Rb-Sr isochron age of 135.7 ± 4.1 Ma. This age is close to the age of the adjacent Niujuan Ag-Au deposit and the associated Er’daogou granite, suggesting a close relationship between magmatism and metallogeny in this region. The S and Pb isotopes of the regional silver polymetallic deposits show similar sources of ore-forming materials. According to a compilation of the available age data on the Mesozoic ore deposits in the northern flank of the NCC, we divide the mineralization into the following four periods: 240–205 Ma, 190–160 Ma, 155–135 Ma, and 135–100 Ma. Mesozoic magmatism and mineralization in the Yingfang deposit mainly took place at 245 Ma and 145–135 Ma. We correlate the Pb-Zn-Ag mineralization to metallogeny associated with large-scale inhomogeneous lithosphere thinning beneath the NCC.


2021 ◽  
Author(s):  
Barbara Namysłowska-Wilczyńska

<p>This geostatistical study investigates the variation in the basic geological parameters of the lithologically varied deposit in mining block R-1 in the west (W) part of the Rudna Mine (the region Lubin – Sieroszowice, SW part of Poland).</p><p>Data obtained from the sampling (sample size N = 708) of excavations in block R-1 were the input for the spatial analyses. The data are the results of chemical analyses of the Cu content in the (recoverable) deposit series, carried out on channel samples and drilled core samples, taken systematically at every 15-20 m in the headings.</p><p>The deposit profile comprises various rock formations, such as: mineralized Weissliegend sandstones, intensively mineralized upper Permian dolomitic-loamy and loamy copper-bearing schists and carbonate rocks: loamy dolomite, striped dolomite and limy dolomite, of various thickness. No schists formed in some parts of block R-1, which are referred to as the schistless area. The deposit series here is considerably less mineralized (comparing with other mining blocks) even though the mineralization thickness of the sandstone and carbonate rocks reaches as much as 20 m.</p><p>The variation in the Cu content and thickness of the recoverable deposit and the estimated averages Z* of the above parameters were modelled using the variogram function and the ordinary (block) kriging technique. The efficiency of the estimations was characterized.</p><p>As part of the further spatial analyses the Z<sub>s</sub> values of the analysed deposit parameters were simulated using the conditional turning bands simulation. Confidence intervals for the values of averages based on the estimated averages Z* and averages <strong> </strong>based on the simulated values (realizations) Z<sub>s</sub>, showing the uncertainty of the estimations and simulations, were calculated.</p><p>The results of the analyses clearly indicate the shifting of the mineralized zone (the mineralizing solutions), sometimes into the sandstones while spreading throughout the floor of calcareous-dolomitic formations and sometimes into the carbonate rocks, partly entering the roof layers of sandstones. It can be concluded that the process of deposit formation and copper mineralization variation had a multiphase character and the lateral and vertical relocation of the valuable metal ores could play a significant role.</p><p>The combination of various geostatistical techniques - estimation and simulation - will allow for more effective management of natural resources of mineral resources, including copper ore deposits.</p>


2021 ◽  
Vol 21 (2) ◽  
pp. geochem2020-010
Author(s):  
George J. Simandl ◽  
Suzanne Paradis ◽  
Johnathan Savard ◽  
Deanna Miller ◽  
Rameses D'Souza ◽  
...  

The Rock Canyon Creek carbonate-hosted REE-F-Ba deposit has tectonic, stratigraphic and structural similarities with Mississippi Valley-type and sparry magnesite deposits in the SE Rocky Mountains. The main REE-fluorite zone is a steeply dipping body, extending 1100 m along-strike, 50 m wide and 100 m deep. It spatially coincides with pre-existing crackle breccias in carbonate rocks, and consists of dolomite, fluorite, barite, pyrite, quartz, K-feldspar, calcite, porous apatite, REE-fluorocarbonates and REE-phosphates. The main fluorocarbonates are bastnaesite, parisite and synchysite. Monazite, crandallite group minerals and apatite are the main phosphates. Fluorite content varies from less than 1 to 13.5% (by weight) and ∑REE  +  Y concentrations vary from trace to 1.95% (by weight). The mineralized zone is heterogeneous on the deposit scale, as indicated by three-dimensional geochemical modelling combined with a geochemical assessment based on 89 mineralized samples and detailed downhole mineral and geochemical profiles of a key borehole. Chemical heterogeneity and key elemental co-variations are explained by strong mineralogical control and have implications for the design of exploration and development programmes for this type of deposit. The chondrite-normalized REE pattern of samples from the mineralized zone shows enrichment in LREE, similar to typical carbonatite-related mineralization; however, no carbonatite is exposed nearby.


Sign in / Sign up

Export Citation Format

Share Document