Erratum to “In vitro production and initiation of pregnancies in inter-genus nuclear transfer embryos derived from leopard cat (Prionailurus bengalensis) nuclei fused with domestic cat (Felis silverstris catus) enucleated oocytes” [Theriogenology 66 (2006) 275–282]

2007 ◽  
Vol 68 (1) ◽  
pp. 115
Author(s):  
Xi-Jun Yin ◽  
Youngho Lee ◽  
Hyosang Lee ◽  
Namhyong Kim ◽  
Lyoungho Kim ◽  
...  
2006 ◽  
Vol 18 (2) ◽  
pp. 262 ◽  
Author(s):  
X. J. Yin ◽  
E. G. Choi ◽  
S. J. Cho ◽  
J. Y. Jin ◽  
N. H. Kim ◽  
...  

The leopard cat (Prionailurus bengalensis), a member of the felidae family, is a threatened animal in South Korea. In terms of endangered felids, nuclear transfer is a potentially valuable technique for assuring the continuation of species with dwindling numbers. The protocol for nuclear transfer has been described previously (Yin et al. 2005 Reproduction 129, 245-249). In this experiment we evaluated nuclear and microtubule remodeling and the in vitro developmental potential of enucleated cat oocytes reconstructed with nuclei from either domestic cat fibroblasts (DCF) or leopard cat fibroblasts (LCF). Microtubule aster was allocated to decondensed chromatin at 6 h post-activation following nuclear transfer of fibroblast cells from both DCF and LCF (3/3 in DCF, 2/3 in LCF), suggesting the introduction of a somatic cell centrosome (Kim et al. 1996 Mol. Reprod. Dev. 43, 248-255; Park et al. 2004 Mol. Reprod. Dev. 68, 25-34). At 12 h following nuclear transfer, the nucleus swelled into a large pronucleus-like structure in most reconstructed oocytes (5/9 in DCF and 4/6 in LCF), which showed further enlargement until 18 h after nuclear transfer (4/6 in DCF, 4/6 in LCF). Two microtubule asters were seen near the swollen nucleus. At 18 h following nuclear transfer, the mitotic metaphase (1/6 in DCF) or two cell divisions (1/6 in DCF, 2/6 in LCF) were observed. The percentage of blastocyst formation from nuclear transfer embryos derived from DCF (4/46, 8.6%) was not significantly different from that for nuclear transfer embryos constructed with LCF (4/52, 7.6%). Statistical significance was established at the P < 0.05 level by a X2-test (SAS; SAS Institute, Inc., Cary, NC, USA). These results indicate that nuclear and microtubule remodeling processes and in vitro developmental ability are similar in cat oocytes reconstructed with both domestic cat and leopard cat nuclei. This work was supported by KOSEF (grant # M10525010001-05N2501-00110).


1999 ◽  
Vol 51 (1) ◽  
pp. 285 ◽  
Author(s):  
P Freistedt ◽  
M.B Stojkovic ◽  
T Bonhoeffer ◽  
J Braun ◽  
E Wolf

2009 ◽  
Vol 21 (1) ◽  
pp. 22 ◽  
Author(s):  
Sadie L. Marjani ◽  
Daniel Le Bourhis ◽  
Xavier Vignon ◽  
Yvan Heyman ◽  
Robin E. Everts ◽  
...  

Microarray technology enables the interrogation of thousands of genes at one time and therefore a systems level of analysis. Recent advances in the amplification of RNA, genome sequencing and annotation, and the lower cost of developing microarrays or purchasing them commercially, have facilitated the analysis of single preimplantation embryos. The present review discusses the components of embryonic expression profiling and examines current research that has used microarrays to study the effects of in vitro production and nuclear transfer.


2015 ◽  
Vol 67 (6) ◽  
pp. 1483-1491
Author(s):  
F.D. Oliveira ◽  
J.R. Sangalli ◽  
F.V. Meirelles ◽  
F. Perecin ◽  
P.P.C. Silva Filho ◽  
...  

In cattle, embryo development is characterized by the appearance of two distinct cell layers, the trophectoderm and the inner cell mass. The latter will undergo differentiation to form the embryonic disc consisting of the epiblast and hypoblast. The aim of this study was to ultrastructurally characterize the bovine embryo from different in vitro production techniques, with emphasis on trophectoderm and inner cell mass cells. Bovine embryos on day 7 (conception = D1) of pregnancy, derived via in vitro production techniques, were fixed for light and transmission electron microscopy processing. Results suggested that embryos produced by nuclear transfer of somatic cells and parthenogenesis showed significant changes in macroscopic and microscopic structure. Size was reduced, and the inner cell mass had no defined shape. Furthermore, organelles responsible for the absorption processes, communication, growth, and cellular metabolism were fewer and had changes in shape, when compared to results in embryos produced by in vitrofertilization. We concluded that embryos produced by parthenogenesis and SCNT exhibit morphological differences when compared with IVF embryos, such as undeveloped blastocoel, poorly defined distribution of ICM, and morphological differences in organelles.


2014 ◽  
Vol 34 (3) ◽  
pp. 277-280 ◽  
Author(s):  
Lílian R. Martins ◽  
Claudia B. Fernandes ◽  
Ana I.S.B. Villaverde ◽  
Fernanda C. Landim-Alvarenga ◽  
Maria D. Lopes

From the Tropic of Capricorn to Equator, the seasonality of domestic cat is known to be absent, i.e., these animals are considered non-seasonal breeders at these regions. We hypothesized that this particularity might have some influence on in vitro embryo production. The aim of this experiment was to determine the percentage of cleavage and morulae and blastocyst formation produced from oocytes recovered from queen ovaries of three distinct status - follicular, luteal or inactive - during two different reproductive seasons experienced by cats in southeast of Brazil (22°53'09" S and 48°26'42" W) - non breeding season (NBS), comprehending January to March; and breeding season (BS), August to October. Thirty queens were neutered. Ovaries were classified according to their status and were sliced in PBS for cumulus oocyte complex (COC) releasing. Grade I COC were washed three times in H-MEM supplemented with BSA, glutamine, sodium pyruvate, cysteine, streptomycin and penicillin. Oocytes were incubated in groups of 20-30 in 400µL of DMEM supplemented with FSH, LH, estradiol, IGF-I and basic fibroblast growth factor under mineral oil for 30 or 36 hours at 38°C in humidified environment of 5% de O2, 5% CO2 and 90% N2. COC were fertilized in Ham's F-10 medium supplemented with BSA, cysteine, pyruvate and streptomycin/penicillin (culture medium) with fresh semen selected through swim up technique. Eighteen hours later, the presumptive zygotes were denuded, the percentage of cleavage was determined and every 10 zygotes were transferred to 100mL drops of culture medium for culture during three days. After 72 hours of culture the percentage of morulae formation was evaluated and these structures were transferred to drops of the same culture medium. At the eighth day of culture blastocyst formation was analyzed. During NBS, from a total of 272 (inactive), 162 (luteal) and 134 (follicular) fertilized oocytes, the percentage of cleaved zygotes, morulae and blastocysts derived from inactive ovaries were 24.63, 16.54 and 8.09 respectively; for those derived from luteal ovaries, the percentage was 21.6, 12.96 and 8.64, and for those from follicular ovaries, they were 24.62, 16.41 and 8.21. Considering BS, from a total of 102 (inactive), 198 (luteal) and 86 (follicular) fertilized oocytes, the relative frequency (%) of cleaved zygotes, morulae and blastocysts derived from inactive ovaries were 64.7, 41.17 and 23.53 respectively; for those derived from luteal ovaries, the percentage was 64.14, 40.41 and 23.73, and for those from follicular ovaries, they were 63.95, 39.54 and 24.41. The results of this experiment demonstrate that no statistically significant difference (P<0.05) was verified in the frequency of cleaved embryos and morulae and blastocyst formation when comparing the three ovarian conditions in the same season. However the breeding season presented better results considering cleavage and morulae and blastocyst formation.


2005 ◽  
Vol 17 (2) ◽  
pp. 168 ◽  
Author(s):  
M.C. Gomez ◽  
C.E. Pope ◽  
L. Lyons ◽  
A. Cole ◽  
M. Lopez ◽  
...  

One of the most remarkable aspects of somatic cell nuclear transfer (NT) is the possibility of avoiding extinction when there are few remaining animals of a specific felid population. Previously, we produced live male African Wildcat (AWC; Felis lybica) cloned kittens using inter-species nuclear transfer (Gomez et al. 2004 Cloning and Stem Cells 6, 217–228). The production of females is a primary objective of most breeding programs. Therefore, the purpose of the present study was to determine (1) if we could produce live female AWC cloned kittens at a proportion similar to that previously demonstrated with males, and (2) if our inter-species NT technique used to produce AWC is applicable to in vitro production of another non-domestic felid species. Specifically, we evaluated the in vivo developmental competence of NT embryos derived by fusion of Black footed cat (BFC, Felis nigripes) and AWC fibroblasts with domestic cat (DSH, Felis catus) cytoplasts, after transfer into domestic cat recipients. Fibroblast cell lines were established from skin biopsies of BFC (6-year-old), and AWC (12-year-old) adult females. After at least three passages, cells were serum-starved for 5 days and injected into the perivitelline space of enucleated domestic cat oocytes. Fusion of cell-cytoplast couplets was induced by applying a 3-s AC pre-pulse of 20 V, 1 MHz, followed by two 30-μs DC pulses of 240 V/mm. Fused couplets were activated 2 to 3 h after fusion by exposure to two 60 μsec DC pulses of 120 V/mm, followed by 4 h incubation with 10 μg/mL cycloheximide and 5 μg/mL cytochalasin B. Reconstructed BFC (n = 16) and AWC (n = 536) NT Day 1 embryos were transferred by laparoscopy into the oviducts of 1 and 12 gonadotrophin-treated DSH recipients, respectively, on Day 1 after induced ovulation. Pregnancy was assessed by ultrasonography on Day 22. One cat (100%) receiving BFC NT embryos and 5 (41.6%) cats receiving AWC NT embryos became pregnant. Twenty-three AWC cloned embryos implanted and 11 kittens were born. Three BFC NT embryos implanted and the pregnancy is currently ongoing. AWC cloned kittens were phenotypically and genetically identical to their somatic cell donor. Their clonal identity was assessed by multiplex PCR amplification of 20 microsatellite markers, including seven markers that are known to be on the X chromosome. In summary, these results indicate that female AWC cloned kittens can be produced and BFC pregnancy can be established in domestic cat recipients. The embryo implantation rate and viability of AWC female cloned embryos was higher than that observed after the transfer of AWC male cloned embryos. The difference may be due to improvements in the NT procedure, rather than to differences in the sex of the cell lines. Table 1. Implantation rate and fetal survival to term of AWC and BFC NT embryos in pregnant domestic cat recipients


Sign in / Sign up

Export Citation Format

Share Document